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Brief History

The originating technology for this ECMA Standard is JavaScript. This technology has been offered by Netscape
Communications for standardization in autumn1996.

The ECMA Standard is submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure.

This ECMA Standard has been adopted by the ECMA General Assembly of June 1997.
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1 Scope
This Standard defines the ECMAScript scripting language.

2 Conformance
A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties,
functions, and program syntax described in this specification.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects, properties,
and functions beyond those described in this specification. In particular, a conforming implementation of
ECMAScript is permitted to provide properties not described  in this specification, and values for those properties,
for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program syntax not described in this
specification. In particular, a conforming implementation of ECMAScript is permitted to support program syntax
that makes use of the “future reserved words” listed in section 7.4.3 of this specification.

3 References
ANSI/ISO 9899:1990: C Standard. American National Standards Institute (1989) and International Standards
Organization (1990).

ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and
Electronics Engineers, New York (1985).

Berners-Lee, T., Masinter, L., and McCahill, M. Uniform Resource Locators. RFC 1738, Network Working Group,
December 1994.

Gay, David M. Correctly Rounded Binary-Decimal and Decimal -Binary Conversions. Numerical Analysis
Manucript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as http://cm.bell-
labs.com/netlib/fp/dtoa.c.gz and as http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various
netlib mirror sites.

Gosling, James, Bill Joy and Guy Steele. The Java1 Language Specification. Addison Wesley Publishing Company
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA ‘87 Conference Proceedings, pp. 227–
241, Orlando, FL, October, 1987.

Unicode Consortium. The Unicode Standard, Version 2.0. Addison-Wesley, Reading, Massachusetts (1996).

SunPro. Freely Distributable LIBM. Sun Microsystems. fdlibm-comment@sunpro.eng.sun.com (1993).

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be computationally
self-sufficient; indeed, there are no provisions in this specification for input of external data or output of computed
results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only
the objects and other facilities described in this specification but also certain environment-specific host objects,
whose description and behavior are beyond the scope of this specification except to indicate that they may provide
certain properties that can be accessed and certain functions that can be called from an ECMAScript program.

                                                       
1 Java is a registered trademark of Sun Microsystems, Inc.
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A scripting language is a programming language that is used to manipulate, customize, and automate the facilities
of an existing system. In such systems, useful functionality is already available through a user interface, and the
scripting language is a mechanism for exposing that functionality to program control. In this way, the existing
system is said to provide a host environment of objects and facilities which completes the capabilities of the scripting
language. A scripting language is intended for use by both professional and non-professional programmers, and
therefore there may be a number of informalities built into the language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web pages
in browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript can
provide core scripting capabilities for a variety of host environments, and therefore the core scripting language is
specified in this document apart from any particular host environment.

4.1 Web Scripting
A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and
input/output. Further, the host environment provides a means to attach scripting code to events such as change of
focus, page and image loading, unloading, error, and abort, selection, form submission, and mouse actions.
Scripting code appears within the HTML and the displayed page is a combination of user interface elements and
fixed and computed text and images. The scripting code is reactive to user interaction and there is no need for a
main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files, and mechanisms to lock and share data. By using browser-side and server side
scripting together it is possible to distribute computation between the client and server while providing a
customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview
The following is an informal overview of ECMAScript—not all parts of the language are described. This overview
is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is an unordered collection of properties
each with 0 or more attributes which determine how each property can be used—for example, when the ReadOnly
attribute for a property is set to true, any attempt by executed ECMAScript code to change  the value of the
property has no effect. Properties are containers that hold other objects, primitive values, or methods. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a method is a function associated with an object via
a property.

ECMAScript defines a collection of built-in objects which round out the definition of ECMAScript entities. These
built-in objects include the Global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, and the Date object.

ECMAScript also defines a set of built-in operators which may not be, strictly speaking, functions or methods.
ECMAScript operators include various unary operations, multiplicative operators, additive operators, bitwise shift
operators, relational operators, equality operators, binary bitwise operators, binary logical operators, assignment
operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are types
associated with properties, and defined functions are not required to have their declarations appear textually before
calls to them

4.2.1 Objects

ECMAScript does not contain proper classes such as those in C++, Smalltalk, or Java, but rather, supports
constructors which create objects by executing code that allocates storage for the objects and initializes all or
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part of them by assigning initial values to their properties. All functions including constructors are objects, but
not all objects are constructors. Each constructor has a Prototype property which is used to implement
prototype-based inheritance and shared properties. Objects are created by using constructors in new
expressions, for example, new String(“A String”) creates a new string object. Invoking a constructor
without using new has consequences that depend on the constructor. For example, String(“A String”)
produces a primitive string, not an object.

ECMAScript supports prototype-based inheritance. Every constructor has an associated prototype, and every
object created by that constructor has an implicit reference to the prototype (called the object’s prototype)
associated with its constructor. Furthermore, a prototype may have a non-null implicit reference to its
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object in the prototype chain that contains a property of
that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on.

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behavior. In ECMAScript, the state and methods are carried by
objects, and structure, behavior, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. The following diagram illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf1, cf2, cf3,
cf4, and cf5. Each of these objects contains properties named q1 and q2. The dashed lines represent the implicit
prototype relationship; so, for example, cf3’s prototype is CFp. The constructor, CF, has two properties itself,
named P1 and P2, which are not visible to CFp, cf1, cf2, cf3, cf4, or cf5. The property named CFP1 in CFp is
shared by cf1, cf2, cf3, cf4, and cf5, as are any properties found in CFp’s implicit prototype chain which are not
named q1, q2, or CFP1. Notice that there is no implicit prototype link between CFp and CF.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign values to all or any of the constructed object’s
properties. In the above diagram, one could add a new shared property for cf1, cf2, cf3, cf4, and cf5 by assigning
a new value to the property in CFp.

4.3 Definitions
The following are informal definitions of key terms associated with ECMAScript.

cf5
q1
q2

cf4
q1
q2

cf3
q1
q2

Cfp
CFP1

 CF
 prototype
 P1
 P2

cf1
q1
q2

cf2
q1
q2

implicit prototype link
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4.3.1 Type

A type is a set of data values.

4.3.2 Primitive value

A primitive value is a member of one of the types Undefined, Null, Boolean, Number, or String. A primitive
value is a datum which is represented directly at the lowest level of the language implementation.

4.3.3 Object

An object is a member of the type Object. It is an unordered collection of properties each of which contains a
primitive value, object, or function. A function stored in a property of an object is called a method.

4.3.4 Constructor

A constructor is a function object which creates and initializes objects. Each constructor has an associated
prototype object which is used to implement inheritance and shared properties.

4.3.5 Prototype

A prototype is an object used to implement structure, state, and behavior inheritance in ECMAScript. When a
constructor creates an object, that object implicitly references the constructor’s associated prototype for the
purpose of resolving property references. The constructor’s associated prototype can be referenced by the
program expression constructor.prototype, and properties added to an object’s prototype are shared,
through inheritance, by all objects sharing the prototype.

4.3.6 Native object

A native object is any object supplied by an ECMAScript implementation independent of the host environment.
Standard native objects are defined in this specification. Some native objects are built-in; others may be
constructed during the course of execution of an ECMAScript program.

4.3.7 Built-in object

A built-in object is any object supplied by an ECMAScript implementation, independent of the host
environment, that is present at the start of the execution of an ECMAScript program. Standard built-in objects
are defined in this specification, and the ECMAScript implementation may specify and define others. Every
built-in object is a native object.

4.3.8 Host object

A host object is any object supplied by the host environment to complete the execution environment of
ECMAScript. Any object that is not native is a host object.

4.3.9 Undefined value

The undefined value is a primitive value used when a variable has not been assigned a value.

4.3.10 Undefined type

The type Undefined has exactly one value, called undefined.

4.3.11 Null value

The null value is a primitive value that represents the null, empty, or nonexistent reference.

4.3.12 Null type

The type Null has exactly one value, called null.

4.3.13 Boolean value

A boolean value is a member of the type Boolean and is one of two unique values, true and false.

4.3.14 Boolean type

The type Boolean represents a logical entity and consists of exactly two unique values. One is called true and
the other is called false.
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4.3.15 Boolean object

A Boolean object is a member of the type Object and is an instance of the Boolean object which is a
constructor. That is, a boolean object is created by using the Boolean constructor in a new expression, supplying
a boolean as an argument. The resulting object has an implicit (unnamed) property which is the boolean. A
boolean object can be coerced to a boolean value. A boolean object can be used anywhere a boolean value is
expected.

This is an example of one of the conveniences built into ECMAScript—in this case the purpose is to
accommodate programmers of varying backgrounds. Those familiar with imperative or procedural
programming languages may find boolean, string and number values more natural, while those familiar with
object-oriented languages may find boolean, string and number objects more intuitive.

4.3.16 String value

A string value is a member of the type String and is a finite ordered sequence of zero or more Unicode
characters.

4.3.17 String type

The type String is the set of all finite ordered sequences of zero or more Unicode characters.

4.3.18 String object

A string object is a member of the type Object and is an instance of the String object which is a constructor.
That is, a string object is created by using the String constructor in a new expression, supplying a string as an
argument. The resulting object has an implicit (unnamed) property which is the string. A string object can be
coerced to a string value. A string object can be used anywhere a string value is expected.

4.3.19 Number value

A number value is a member of the type Number and is a direct representation of a number.

4.3.20 Number type

The type Number is a set of values representing numbers. In ECMAScript the set of values represent the
double-precision 64-bit format IEEE 754 values including the special “Not-a-Number” (NaN) values, positive
infinity, and negative infinity.

4.3.21 Number object

A number object is a member of the type Object and is an instance of the Number object which is a
constructor. That is, a number object is created by using the Number constructor in a new expression, supplying
a number as an argument. The resulting object has an implicit (unnamed) property which is the number. A
number object can be coerced to a number value. A number object can be used anywhere a number value is
expected. Note that a number object can have shared properties by adding them to the Number prototype.

4.3.22 Infinity

The primitive value Infinity represents the positive infinite number value.

4.3.23 NaN

The primitive value NaN represents the set of IEEE Standard “Not-a-Number” values.

5 Notational Conventions
5.1 Syntactic and Lexical Grammars

This section describes the context-free grammars used in this specification to define the lexical and syntactic
structure of an ECMAScript program.

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of one or more nonterminal and terminal symbols as its right-
hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.
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Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of terminal
symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a
production for which the nonterminal is the left-hand side.

5.1.2 The lexical grammar

A lexical grammar for ECMAScript is given in Section 7. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symbol Input, that
describe how sequences of Unicode characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,
also become part of the stream of input elements and guide the process of automatic semicolon insertion (see
section 7.8). Simple white space and single-line comments are simply discarded and do not appear in the
stream of input elements for the syntactic grammar. A multi-line comment is likewise simply discarded if it
contains no line terminator; but if a multi-line comment contains one or more line terminators, then it is
replaced by a single line terminator, which becomes part of the stream of input elements for the syntactic
grammar.

Productions of the lexical grammar are distinguished by having two colons “::” as separating punctuation.

5.1.3 The numeric string grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the part of
the lexical grammar having to do with numeric literals and has as its terminal symbols the characters of the
Unicode character set. This grammar appears in section 9.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

5.1.4 The syntactic grammar

The syntactic grammar for ECMAScript is given in Sections 11, 12, 13, and 14. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (see section 5.1.2). It defines a set
of productions, starting from the goal symbol Program, that describe how sequences of tokens can form
syntactically correct ECMAScript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted to a
stream of input elements by repeated application of the lexical grammar; this stream of input elements is then
parsed by a single application of the syntax grammar. The program is syntactically in error if the tokens in the
stream of input elements cannot be parsed as a single instance of the goal nonterminal Program, with no tokens
left over.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in Sections 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the sequence
in certain places (such as before end-of-line characters). Furthermore, certain token sequences that are
described by the grammar are not considered acceptable if an end-of-line character appears in certain
“awkward” places.

5.1.5 Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown in fixed width font, both in the productions of the grammars and throughout this
specification whenever the text directly refers to such a terminal symbol. These are to appear in a program
exactly as written.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar
the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on
succeeding lines. For example, the syntactic definition:
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WithStatement :
with ( Expression ) Statement

states that the nonterminal WithStatement represents the token with, followed by a left parenthesis token,
followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of
Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed
by a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is
defined in terms of itself. The result is that an ArgumentList may contain any positive number of arguments,
separated by commas, where each argument expression is an AssignmentExpression. Such recursive definitions
of nonterminals are common.

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional symbol.
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration :
Identifier Initializeropt

is a convenient abbreviation for:

VariableDeclaration :
Identifier
Identifier Initializer

and that:

IterationStatement :
for ( Expressionopt ; Expressionopt ; Expressionopt ) Statement

is a convenient abbreviation for:

IterationStatement :
for ( ; Expressionopt ; Expressionopt ) Statement
for ( Expression ; Expressionopt ; Expressionopt ) Statement

which in turn is an abbreviation for:

IterationStatement :
for ( ; ; Expressionopt ) Statement
for ( ; Expression ; Expressionopt ) Statement
for ( Expression ; ; Expressionopt ) Statement
for ( Expression ; Expression ; Expressionopt ) Statement

which in turn is an abbreviation for:
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IterationStatement :
for ( ; ; ) Statement
for ( ; ; Expression ) Statement
for ( ; Expression ; ) Statement
for ( ; Expression ; Expression ) Statement
for ( Expression ; ; ) Statement
for ( Expression ; ; Expression ) Statement
for ( Expression ; Expression ; ) Statement
for ( Expression ; Expression ; Expression ) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the
input stream at the indicated position. For example, the production:

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

indicates that the production may not be used if a LineTerminator occurs in the program between the return
token and the Expression .

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the program.

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

ZeroToThree :: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree ::
0
1
2
3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multicharacter token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
“but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where it would
be impractical to list all the alternatives:

SourceCharacter:
any Unicode character
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5.2 Algorithm Conventions
This specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to clarify
semantics. In practice, there may be more efficient algorithms available to implement a given feature.

When an algorithm is to produce a value as a result, this specification uses the directive return x to indicate that
the result of the algorithm is the value of x and that the algorithm should terminate. The notation Result(n) is used
as a shorthand for the result of step n. Type(x) is used as a shorthand for the type of x.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this section should always be understood as computing exact mathematical results on
mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical operation
or function is applied to a floating-point number, it should be understood as being applied to the exact
mathematical value represented by that floating-point number. Such a floating-point number must be finite, and if
it is +0 or −−0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which is −x if x is negative (less than zero) and
otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and −1 if x is negative. The sign function is not used in
this standard for cases when x is zero.

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y such that
abs(k) < abs(y) and x−k = q⋅y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.
Note that floor(x) = x−(x modulo 1).

If an algorithm is defined to generate a runtime error, execution of the algorithm is terminated and no result is
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals with
the error. The same applies for exceptions that are explicitly thrown. See section 12.1. The algorithm step that
deals with the runtime error, or the explicitly thrown exception, has available to it the details about the error, or
the value thrown by the throw statement, respectively.

6 Source Text
ECMAScript source text is represented as a sequence of characters representable using the Unicode version 2.0
character encoding.

SourceCharacter ::
any Unicode character

However, it is possible to represent every ECMAScript program using only the first 128 Unicode characters. Other
Unicode characters may appear only within comments and string literals. In string literals, any Unicode character
may also be expressed as a Unicode escape sequence consisting of six characters from the first 128 characters,
namely \u plus four hexadecimal digits. Within a comment, such an escape sequence is effectively ignored as part of
the comment. Within a string literal, the Unicode escape sequence contributes one character to the string value of the
literal.

Note that ECMAScript differs from the Java programming language in the behavior of Unicode escape sequences. In
a Java program, if the Unicode escape sequence \u000A, for example, occurs within a single-line comment, it is
interpreted as a line terminator (Unicode character 000A is line feed) and therefore the next character is not part of
the comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java program, it
is likewise interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of
\u000A to cause a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode
escape sequence occurring within a comment is never interpreted and therefore cannot contribute to termination of
the comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program
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always contributes a character to the string value of the literal and is never interpreted as a line terminator or as a
quote mark that might terminate the string literal.

7 Lexical Conventions
The source text of an ECMAScript program is first converted into a sequence of tokens and white space. A token is a
sequence of characters that comprises a lexical unit. The source text is scanned from left to right, repeatedly taking
the longest possible sequence of characters as the next token.

7.1 White Space
White space characters are used to improve source text readability and to separate tokens (indivisible lexical units)
from each other, but are otherwise insignificant. White space may occur between any two tokens, and may occur
within strings (where they are considered significant characters forming part of the literal string value), but cannot
appear within any other kind of token.

The following characters are considered to be white space:

Unicode Value Name Formal Name
\u0009 Tab <TAB>
\u000B Vertical Tab <VT>
\u000C Form Feed <FF>
\u0020 Space <SP>

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<SP>

7.2 Line Terminators
Like whitespace characters, line terminator characters are used to improve source text readability and to separate
tokens (indivisible lexical units) from each other. However, unlike whitespace characters, line terminators have
some influence over the behavior of the syntactic grammar. In general, line terminators may occur between any
two tokens, but there are a few places where they are forbidden by the syntactic grammar. A line terminator
cannot occur within any token, not even a string. Line terminators also affect the process of automatic semicolon
insertion (see section 7.9.2).

The following characters are considered to be line terminators:

Unicode Value Name Formal Name
\u000A Line Feed <LF>
\u000D Carriage Return <CR>

Syntax

LineTerminator ::
<LF>
<CR>

7.3 Comments

Description

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a LineTerminator character, and because of the
general rule that a token is always as long as possible, a single-line comment always consists of all characters
from the // marker to the end of the line. However, the LineTerminator at the end of the line is not considered to
be part of the single-line comment; it is recognized separately by the lexical grammar and becomes part of the
stream of input elements for the syntactic grammar. This point is very important, because it implies that the
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presence or absence of single-line comments does not affect the process of automatic semicolon insertion (see
section 7.9.2).

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsopt */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

MultiLineNotAsteriskChar ::
SourceCharacter but not asterisk *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not forward-slash / or asterisk *

SingleLineComment ::
// SingleLineCommentCharsopt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

7.4 Tokens

Syntax

Token ::
ReservedWord
Identifier
Punctuator
NumericLiteral
StringLiteral
SharpVariable

7.4.1 Reserved Words

Description

Reserved words cannot be used as identifiers.

Syntax



ECMAScript  Language Specificat ion with Netscape Proposals  22-Apr-98

12

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.4.2 Keywords

The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript programs.

Syntax

Keyword :: one of
break for new var
continue function return void
delete if this while
else in typeof with

7.4.3 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

Syntax

FutureReservedWord :: one of
case debugger export super
catch default extends switch
class do finally throw
const enum import try

7.5 Identifiers

Description

An identifier is a character sequence  of unlimited length, where each character in the sequence must be a letter, a
decimal digit, an underscore (_) character, or a dollar sign ($) character, and the first character may not be a
decimal digit. ECMAScript identifiers are case sensitive: identifiers whose characters differ in any way, even if
only in case, are considered to be distinct.

Syntax

Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierLetter
IdentifierName IdentifierLetter
IdentifierName DecimalDigit

IdentifierLetter :: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

$ _

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9
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7.6 Punctuators

Syntax

Punctuator :: one of
= > < == <= >=

!= , ! ~ ? :

. && || ++ -- +

- * / & | ^

% << >> >>> += -=

*= /= &= |= ^= %=

<<= >>= >>>= ( ) {

} [ ] ; === !==

7.7 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.7.1 Null Literals

Syntax

NullLiteral ::
null

Semantics

The value of the null literal null is the sole value of the Null type, namely null.

7.7.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal false is a value of the Boolean type, namely false.

7.7.3 Numeric Literals

Syntax

NumericLiteral ::
DecimalLiteral
HexIntegerLiteral
OctalIntegerLiteral
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DecimalLiteral ::
DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalIntegerLiteral ExponentPartopt

DecimalIntegerLiteral ::
0
NonZeroDigit DecimalDigitsopt

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral ::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

OctalIntegerLiteral ::
0 OctalDigit
OctalLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, if this mathematical value is not representable
using the number type, it is rounded to either the nearest representable value above the mathematical value or
the nearest representable value below the mathematical value. The exact rounding mechanism is unspecified,
but implementations are encouraged to use IEEE 754 round-to-nearest mode.

• The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.
• The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.
• The MV of NumericLiteral :: OctalIntegerLiteral is the MV of OctalIntegerLiteral.
• The MV of DecimalLiteral :: DecimalIntegerLiteral . is the MV of DecimalIntegerLiteral.
• The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits is the MV of DecimalIntegerLiteral

plus (the MV of DecimalDigits times 10−n), where n is the number of characters in DecimalDigits.
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• The MV of DecimalLiteral :: DecimalIntegerLiteral . ExponentPart is the MV of DecimalIntegerLiteral
times 10e, where e is the MV of ExponentPart.

• The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimalIntegerLiteral plus (the MV of DecimalDigits times 10−n)) times 10e, where n is the number of
characters in DecimalDigits and e is the MV of ExponentPart.

• The MV of DecimalLiteral ::. DecimalDigits is the MV of DecimalDigits times 10−n, where n is the number
of characters in DecimalDigits.

• The MV of DecimalLiteral ::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10e−n, where
n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

• The MV of DecimalLiteral :: DecimalIntegerLiteral is the MV of DecimalIntegerLiteral.
• The MV of DecimalLiteral :: DecimalIntegerLiteral ExponentPart is the MV of DecimalIntegerLiteral

times 10e, where e is the MV of ExponentPart.
• The MV of DecimalIntegerLiteral :: 0 is 0.

• The MV of DecimalIntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10n)
plus the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

• The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.
• The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the

MV of DecimalDigit.
• The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger.
• The MV of SignedInteger :: DecimalDigits is the MV of DecimalDigits.
• The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits.

• The MV of SignedInteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

• The MV of DecimalDigit :: 0 or of HexDigit :: 0 or of OctalDigit :: 0 is 0.

• The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 is 1.

• The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit :: 2 is 2.

• The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.

• The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.

• The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit :: 5 is 5.

• The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.

• The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is 7.

• The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

• The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.

• The MV of HexDigit :: a or of HexDigit :: A is 10.

• The MV of HexDigit :: b or of HexDigit :: B is 11.

• The MV of HexDigit :: c or of HexDigit :: C is 12.

• The MV of HexDigit :: d or of HexDigit :: D is 13.

• The MV of HexDigit :: e or of HexDigit :: E is 14.

• The MV of HexDigit :: f or of HexDigit :: F is 15.

• The MV of HexIntegerLiteral :: 0x HexDigit is the MV of HexDigit.
• The MV of HexIntegerLiteral :: 0X HexDigit is the MV of HexDigit.
• The MV of HexIntegerLiteral :: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus

the MV of HexDigit.
• The MV of OctalIntegerLiteral :: 0 OctalDigit is the MV of OctalDigit.
• The MV of OctalIntegerLiteral :: OctalIntegerLiteral OctalDigit is (the MV of OctalIntegerLiteral times 8)

plus the MV of OctalDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the number value for the
MV (in the sense defined in section 8.4), unless the literal is a DecimalLiteral and the literal has more than 20
significant digits, in which case the number value may be either the number value for the MV of a literal
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produced by replacing each significant digit after the 20th with a 0 digit or the number value for the MV of a
literal produced by replacing each significant digit after the 20th with a 0 digit and then incrementing the literal
at the 20th digit position. A digit is significant if it is not part of an ExponentPart and
• it is not 0; or
• there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.7.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence.

Syntax

StringLiteral ::
“ DoubleStringCharactersopt “
‘ SingleStringCharactersopt  ‘

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::
SourceCharacter but not double-quote “or backslash \ or LineTerminator
EscapeSequence

SingleStringCharacter ::
SourceCharacter but not single-quote ‘or backslash \ or LineTerminator
EscapeSequence

EscapeSequence ::
CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence ::
\ SingleEscapeCharacter
\ NonEscapeCharacter

SingleEscapeCharacter ::  one of
‘ “ \ b f n r t v

NonEscapeCharacter::
SourceCharacter but not EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
OctalDigit
x
u

HexEscapeSequence ::
\x HexDigit HexDigit
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OctalEscapeSequence ::
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

ZeroToThree :: one of
0 1 2 3

UnicodeEscapeSequence ::
\u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminals HexDigit and OctalDigit are given in section 7.7.3.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in terms of
character values (CV) contributed by the various parts of the string literal. As part of this process, some
characters within the string literal are interpeted as having a mathematical value (MV), as described below or
in section 7.7.3.

• The SV of StringLiteral :: “” is the empty character sequence .

• The SV of StringLiteral :: “ is the empty character sequence.

• The SV of StringLiteral :: “ DoubleStringCharacters “ is the SV of DoubleStringCharacters.

• The SV of StringLiteral :: ‘ SingleStringCharacters ‘ is the SV of SingleStringCharacters.

• The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the CV of
DoubleStringCharacter.

• The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters  is a sequence of the
CV of DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacters in order.

• The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one character, the CV of
SingleStringCharacter.

• The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters  is a sequence of the CV
of SingleStringCharacter followed by all the characters in the SV of SingleStringCharacters in order.

• The CV of DoubleStringCharacter :: SourceCharacter but not double-quote “ or backslash \ or
LineTerminator  is the SourceCharacter character itself.

• The CV of DoubleStringCharacter :: EscapeSequence is the CV of the EscapeSequence.
• The CV of SingleStringCharacter :: SourceCharacter but not single-quote ‘ or backslash \ or

LineTerminator is the SourceCharacter character itself.
• The CV of SingleStringCharacter :: EscapeSequence is the CV of the EscapeSequence.
• The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.
• The CV of EscapeSequence :: OctalEscapeSequence is the CV of the OctalEscapeSequence.
• The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.
• The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.
• The CV of CharacterEscapeSequence :: \ SingleEscapeCharacter is the Unicode character whose Unicode

value is determined by  the SingleEscapeCharacter according to the following table:

Escape Sequence Unicode Value Name Symbol
\b \u0008 backspace <BS>
\t \u0009 horizontal tab <HT>
\n \u000A line feed (new line) <LF>
\v \n000B vertical tab <VT>
\f \u000C form feed <FF>
\r \u000D carriage return <CR>
\” \u0022 double quote “
\’ \u0027 single quote ‘
\\ \u005C backslash \
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• The CV of CharacterEscapeSequence :: \ NonEscapeCharacter is the CV of the NonEscapeCharacter.

• The CV of NonEscapeCharacter :: SourceCharacter but not EscapeCharacter or LineTerminator is the
SourceCharacter character itself.

• The CV of HexEscapeSequence :: \x HexDigit HexDigit is the Unicode character whose code is (16 times
the MV of the first HexDigit) plus the MV of the second HexDigit.

• The CV of OctalEscapeSequence :: \ OctalDigit is the Unicode character whose code  is the MV of the
OctalDigit.

• The CV of OctalEscapeSequence :: \ OctalDigit OctalDigit is the Unicode character whose code is (8 times
the MV of the first OctalDigit) plus the MV of the second OctalDigit.

• The CV of OctalEscapeSequence :: \ ZeroToThree OctalDigit OctalDigit is the Unicode character whose
code is (64 (that is, 82) times the MV of the ZeroToThree) plus (8 times the MV of the first OctalDigit) plus
the MV of the second OctalDigit.

• The MV of ZeroToThree :: 0 is 0.

• The MV of ZeroToThree :: 1 is 1.

• The MV of ZeroToThree :: 2 is 2.

• The MV of ZeroToThree :: 3 is 3.

• The CV of UnicodeEscapeSequence :: \u HexDigit HexDigit HexDigit HexDigit is the Unicode character
whose code is (4096 (that is, 163) times the MV of the first HexDigit) plus (256 (that is, 162) times the MV
of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit.

Note that a LineTerminator character cannot appear in a string literal, even if preceded by a backslash \. The
correct way to cause a line terminator character to be part of the string value of a string literal is to use an
escape sequence such as \n or \u000A.

7.7.5 Regular Expression Literals

A regular expression literal is one or more characters enclosed forward shash characters. Each character may
be represented by an escape sequence. Regular expression literals may not be empty; note that instead of
representing an empty regular expression literal, the characters // start a single-line comment (see section
7.3).

Syntax

RegularExpressionLiteral ::
/ RegularExpression / RegularExpressionFlagsopt

RegularExpression ::
ReAlternative
ReAlternative | RegularExpression

ReAlternative ::
ReItem
ReItem ReAlternative

ReItem ::
ReAssertion
ReQuantifiedAtom

ReAssertion ::
^
$
\b
\B
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ReQuantifiedAtom ::
ReAtom
ReQuantifiedAtom  *
ReQuantifiedAtom  +
ReQuantifiedAtom  ?
ReQuantifiedAtom  { DecimalIntegerLiteral ,opt }
ReQuantifiedAtom  { DecimalIntegerLiteral , DecimalIntegerLiteral }

ReAtom ::
( RegularExpression  )
.
[ ^opt ReCharacterClassSequence ]
ReLiteralCharacter
ReEscapeSequence

ReLiteralCharacter ::
SourceCharacter but not LineTerminator nor any of:

/ \ . * + ? | ( ) { } [ ]

ReEscapeSequence ::
\ ReSpecialCharacterEscapeCharacter
\ ReCharacterClassEscapeCharacter
\ ReNonEscapeCharacter
\c SourceCharacter but not LineTerminator
\ NonZeroDigit DecimalDigitsopt

UnicodeEscapeSequence
HexEscapeSequence
OctalEscapeSequence

ReSpecialCharacterEscapeCharacter ::  one of
f n r t v

ReCharacterClassEscapeCharacter ::  one of
d D s S w W

ReNonEscapeCharacter ::
SourceCharacter but not LineTerminator nor any of:

f n r t v d D s S w W b B c x
0 1 2 3 4 5 6 7 8 9

ReCharacterClassSequence ::
ReCharacterClass ReCharacterClassSequenceopt

ReCharacterClass ::
ReCharacterClassCharacter
ReCharacterClassCharacter - ReCharacterClassCharacter

ReCharacterClassCharacter ::
SourceCharacter but not LineTerminator nor any of: \ - ]
ReEscapeSequence

RegularExpressionFlags ::
RegularExpressionFlag RegularExpressionFlagopt
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RegularExpressionFlag ::
g
i

A regular expression literal represents an object of type RegExp (see 15.9). The expression is compiled only
once. The RegExp object is created before the evaluation of the containing program begins. Evaluation of the
literal produces a reference to this object; it does not create a new object.

7.8 Sharp Variables
Sharp variables provide a means by which expressions used within object initializers and array initializers may
refer to the enclosing initializers. See sections 10.1.4, 11.1.4, 11.1.5and 11.1.6.

Syntax

SharpVariable ::
SharpVarDefinition
SharpVarReference

SharpVarDefinition ::
# DecimalIntegerLiteral =

SharpVarReference ::
# DecimalIntegerLiteral #

7.9 Automatic semicolon insertion
Certain ECMAScript statements (empty statement, variable statement, expression statement, continue
statement, break statement, and return statement) must each be terminated with a semicolon. Such a
semicolon may always appear explicitly in the source text. For convenience, however, such semicolons may be
omitted from the source text in certain situations. These situations are described by saying that semicolons are
automatically inserted into the source code token stream in those situations.

7.9.1 Rules of automatic semicolon insertion

• When, as the program is parsed from left to right, a token (called the offending token) is encountered that is
not allowed by any production of the grammar and the parser is not currently parsing the header of a for
statement, then a semicolon is automatically inserted before the offending token if one or more of the
following conditions is true:

1. The offending token is separated from the previous token by at least one LineTerminator.

2. The offending token is }.

• When, as the program is parsed from left to right, the end of the input stream of tokens is encountered and
the parser is unable to parse the input token stream as a single complete ECMAScript Program, then a
semicolon is automatically inserted at the end of the input stream.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement.

• When, as the program is parsed from left to right, a token is encountered that is allowed by some production
of the grammar, but the production is a restricted production and the token would be the first token for a
terminal or nonterminal immediately  following the annotation “[no LineTerminator here]” within the restricted
production (and therefore such a token is called a restricted token), and the restricted token is separated
from the previous token by at least one LineTerminator, then there are two cases:

1. If the parser is not currently parsing the header of a for statement, a semicolon is automatically inserted
before the restricted token.

2. If the parser is currently parsing the header of a for statement, it is a syntax error.
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These are the only restricted productions in the grammar:

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] --

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

The practical effect of these restricted productions is as follows:

1. When the token ++ or—is encountered where the parser would treat it as a postfix operator, and at least
one LineTerminator occurred between the preceding token and the ++ or—token, then a semicolon is
automatically inserted before the ++ or—token.

2. When the token return is encountered and a LineTerminator is encountered before the next token is
encountered, a semicolon is automatically inserted after the token return.

The resulting practical advice to ECMAScript programmers is:

1. A postfix ++ or—operator should appear on the same line as its operand.

2. An Expression in a return statement should start on the same line as the return token.

7.9.2 Examples of Automatic Semicolon Insertion

The source

{ 1 2 } 3

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{ 1
2 } 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{ 1
;2 ;} 3;

which is a valid ECMAScript sentence.

The source

for (a; b
)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the place
where a semicolon is needed is within the header of a for statement. Automatic semicolon insertion never
occurs within the header of a for statement.

The source

return
a + b

is transformed by automatic semicolon insertion into the following:

return;
a + b;

Note that the expression a + b is not treated as a value to be returned by the return statement, because a
LineTerminator separates it from the token return.

The source
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a = b
++c

is transformed by automatic semicolon insertion into the following:

a = b;
++c;

Note that the token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator
occurs between b and ++.

The source

if (a > b)
else c = d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,
even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a = b + c
(d + e).print()

is not transformed by automatic semicolon insertion, because the parenthesized expression that begins the
second line can be interpreted as  an argument list for a function call:

a = b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

8 Types

A value is an entity that takes on one of nine types. There are six standard types (Undefined, Null, Boolean, String,
Number, and Object) and three internal types (Reference, List, and Completion) Values of type Reference, List,
and Completion are used only as intermediate results of expression evaluation and cannot be stored to properties of
objects.

8.1 The Undefined type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value is of
type Undefined.

8.2 The Null type

The Null type has exactly one value, called null.

8.3 The Boolean type

The Boolean type represents a logical entity having two values, called true and false.

8.4 The String type
The String type is the set of all finite ordered sequences of zero or more Unicode characters. Each character is
regarded as occupying a position within the sequence. These positions are identified by nonnegative integers. The
leftmost character (if any) is at position 0, the next character (if any) at position 1, and so on. The length of a
string is the number of distinct positions within it. The empty string has length zero and therefore  contains no
characters.

8.5 The Number type

The Number type has exactly 18437736874454810627 (that is, 264−253+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 9007199254740990 (that is, 253−2) distinct “Not-a-Number” values of the IEEE Standard are
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represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the program
expression NaN, assuming that the globally defined variable NaN has not been altered by program execution.) In
some implementations, external code might be able to detect a difference between various Non-a-Number values,
but such behavior is implementation-dependent; to ECMAScript code, all NaN values are indistinguishable from
each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values are
also referred to for expository purposes by the symbols +∞∞ and −−∞∞, respectively. (Note that these two infinite
number values are produced by the program expressions +Infinity (or simply Infinity) and -Infinity,
assuming that the globally defined variable Infinity has not been altered by program execution.)

The other 18437736874454810624 (that is, 264−253) values are called the finite numbers. Half of these are positive
numbers and half are negative numbers; for every finite positive number there is a corresponding negative number
having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and −−0, respectively. (Note that these two zero number values are produced
by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 264−253−2) finite nonzero values are of two kinds:

18428729675200069632 (that is, 264−254) of them are normalized, having the form

s ⋅ m ⋅ 2e

where s is +1 or −1, m is a positive integer less than 253 but not less than 252, and e is an integer ranging from
−1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 253−2) values are denormalized, having the form

s ⋅ m ⋅ 2e

where s is +1 or −1, m is a positive integer less than 252, and e is −1074.

Note that all the positive and negative integers whose magnitude is no greater than 253 are representable in the
Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise it has an even significand.

In this specification, the phrase “the number value for x” where x represents an exact nonzero real mathematical
quantity (which might even be an irrational number such as π) means a number value chosen in the following
manner. Consider the set of all finite values of the Number type, with −−0 removed and with two additional values
added to it that are not representable in the Number type, namely 21024 (which is +1 ⋅ 253 ⋅ 2971) and −21024 (which
is −1 ⋅ 253 ⋅ 2971). Choose the member of this set that is closest in value to x. If two values of the set are equally
close, then the one with an even significand is chosen; for this purpose, the two extra values 21024 and −21024 are
considered to have even significands. Finally, if 21024 was chosen, replace it with +∞∞; if −21024 was chosen, replace
it with −−∞∞; if +0 was chosen, replace it with −−0 if and only if x is less than zero; any other chosen value is used
unchanged. The result is the number value for x. (This procedure corresponds exactly to the behavior of the IEEE
754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range −231 through 231−1, inclusive, or in the range 0
through 232−1, inclusive. These operators accept any value of the Number type but first convert each such value to
one of 232 integer values. See the descriptions of the ToInt32 and ToUint32 operators in sections 9.5 and 9.6,
respectively.

8.6 The Object type
An Object is an unordered collection of properties. Each property consists of a name, a value and a set of
attributes.

8.6.1 Property attributes

A property can have zero or more attributes from the following set:
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Attribute Description
ReadOnly The property is a read-only property. Attempts by ECMAScript code to write to

the property will be ignored. (Note, however, that in some cases the value of a
property with the ReadOnly attribute may change over time because of actions
taken by the underlying implementation; therefore “ReadOnly” does not mean
“constant and unchanging”!)

DontEnum The property is not to be enumerated by a for-in enumeration (section )
DontDelete Attempts to delete the property will be ignored. See the description of the

delete operator in section 11.4.1.
Internal Internal properties have no name and are not directly accessible via the property

accessor operators. How these properties are accessed is implementation
specific. How and when some of these properties are used is specified by the
language specification.

8.6.2 Internal Properties and Methods

Internal properties and methods implement various inherent semantics of objects. Most internal properties are
unnamed and therefore not exposed in the language. For the purposes of this document, their names are
enclosed in double square brackets [[ ]]. The [[Parent]] and [[Prototype]] properties are also accessible through
the property names __parent__ and __proto__, respectively.

Some internal properties must be implemented for every object, and some are optional as described below.
When an algorithm uses an internal property of an object and the object does not implement the indicated
internal property, a runtime error is generated.

The following table summarizes the internal properties used by this specification. The description indicates
their behaviour for native ECMAScript objects. Host objects may implement these internal methods with any
implementation-dependent behaviour, or it may be that a host object implements only some internal methods
and not others.

Property Parameters Description
[[Parent]] None The next object in the scope chain.
[[Prototype]] none The prototype of this object.
[[Class]] none The kind of this object.
[[Value]] none Internal state information associated with this object.
[[Get]] (PropertyName) Returns the value of the property.
[[Put]] (PropertyName, Value) Sets the specified property to Value.
[[CanPut]] (PropertyName) Returns a boolean value indicating whether a [[Put]]

operation with the specified PropertyName  will
succeed.

[[HasProperty]] (PropertyName) Returns  the first object (either this or an object in its
[[Prototype]] chain) containing a member with the
given name, or null if no such member exists

[[Delete]] (PropertyName) Removes the specified property from the object.
[[DefaultValue]] (Hint) Returns a default value for the object, which should be

a primitive value (not an object or reference).
[[Construct]] a list of argument values

provided by the caller
Constructs an object. Invoked via the new operator.
Objects that implement this internal method are called
constructors.

[[Call]] a list of argument values
provided by the caller

Executes code associated with the object. Invoked via a
function call expression. Objects that implement this
internal method are called functions.

Every object must implement the [[Class]] property and the [[Get]], [[Put]], [[HasProperty]], [[Delete]], and
[[DefaultValue]] methods, even host objects; native objects must also implement the [[Parent]] and
[[Prototype]] properties  (Note, however, that the [[DefaultValue]] method may, for some objects, simply
generate a runtime error.)
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The value of the [[Parent]] property must be either an object or null, and every [[Parent]] chain must have finite
length (that is, starting from any object, recursively accessing the [[Parent]] property must eventually lead to a
null value). The [[Parent]] property is used for implementing the scope chain for name lookup. Properties of the
[[Parent]] object are exposed as properties of the original object for purposes of simple name lookup, as
described in 10.1.4. The value of the [[Parent]] property is initially set during  object construction (15.3.2.1)
and is also set when an activation object  is created (10.1.7) and when the scope chain object for a with
statement is created (Error! Reference source not found.). The value of the [[Parent]] property for a function
object depends on how and where the function is declared; see section 13. Whether or not a native object can
have a host object as its [[Parent]] depends on the implementation.

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]] chain must have
finite length (that is, starting from any object, recursively accessing the [[Prototype]] property must eventually
lead to a null value). The [[Prototype]] property is used for implementing inheritance. Properties of the
[[Prototype]] object are exposed as properties of the original object for the purposes of get access (retrieval), but
not for put access (assignment), as described in sections 8.6.2.1 and 8.6.2.2. The value of the [[Prototype]]
property is initially set during object construction (15.3.2.1). Whether or not a native object can have a host
object as its [[Prototype]] depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The value of
the [[Class]] property of a host object may be any value, even a value used by a built-in object for its [[Class]]
property. Note that this specification does not provide any means for a program to access the value of a
[[Class]] property; that value is used internally to distinguish different kinds of built-in objects.

Every native object implements the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], and [[Delete]] methods in the
manner described in sections 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.2.4, and 8.6.2.5, respectively, except that Array
objects have a slightly different implementation of the [[Put]] method (section 15.7.5.1) and With objects
redirect these methods s to operate on the [[Prototype]] instead of the original object (section 15.5.2.1)  Host
objects may implement these methods in any manner; for example, one possibility is that [[Get]] and [[Put]] for
a particular host object indeed fetch and store property values but [[HasProperty]] always generates null.

In the following algorithm descriptions, assume O is a native ECMAScript object and P is a string.

8.6.2.1 [[Get]](P)

When the [[Get]] method of O is called with property name P, the following steps are taken:

1. If O doesn’t have a property with name P, go to step 4.
2. Get the value of the property.
3. Return Result(2).
4. If the [[Prototype]] of O is null, return undefined.
5. Call the [[Get]] method of [[Prototype]] with property name P.
6. Return Result(5).

8.6.2.2 [[Put]](P, V)

When the [[Put]] method of O is called with property P and value V, the following steps are taken:

1. Call the [[CanPut]] method of O with name P.
2. If Result(1) is false, return.
3. If O doesn’t have a property with name P, go to step 6.
4. Set the value of the property to V. The attributes of the property are not changed.
5. Return.
6. Create a property with name P, set its value to V and give it empty attributes.
7. Return.

Note, however, that if O is an Array object, it has a more elaborate [[Put]] method (section15.7.5.1).

8.6.2.3 [[CanPut]](P)

The [[CanPut]] method is used only by the [[Put]] method.

When the [[CanPut]] method of O is called with property P, the following steps are taken:
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1. If O doesn’t have a property with name P, go to step 4.
2. If the property has the ReadOnly attribute, return false.
3. Return true.
4. If the [[Prototype]] of O is null, return true.
5. If the [[Prototype]] of O is a host object that does not implement the [[CanPut]] method, return false.
6. Call the [[CanPut]] method of [[Prototype]] of O with property name P.
7. Return Result(4).

8.6.2.4 [[HasProperty]](P)

When the [[HasProperty]] method of O is called with property name P, the following steps are taken:

1. If O has a property with name P, return O.
2. If the [[Prototype]] of O is null, return null.
3. Call the [[HasProperty]] method of [[Prototype]] with property name P.
4. Return Result(3).

8.6.2.5 [[Delete]](P)

When the [[Delete]] method of O is called with property name P, the following steps are taken:

1. If O doesn’t have a property with name P, return true.
2. If the property has the DontDelete attribute, return false.
3. Remove the property with name P from O.
4. Return true.

8.6.2.6 [[DefaultValue]](hint)

When the [[DefaultValue]] method of O is called with hint String, the following steps are taken:

1. Call the [[Get]] method of object O with argument “toString”.
2. If Result(1) is not an object, go to step 5.
3. Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.
4. If Result(3) is a primitive value, return Result(3).
5. Call the [[Get]] method of object O with argument “valueOf”.
6. If Result(5) is not an object, go to step 9.
7. Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.
8. If Result(7) is a primitive value, return Result(7).
9. Generate a runtime error.

When the [[DefaultValue]] method of O is called with hint Number, the following steps are taken:

1. Call the [[Get]] method of object O with argument “valueOf”.
2. If Result(1) is not an object, go to step 5.
3. Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.
4. If Result(3) is a primitive value, return Result(3).
5. Call the [[Get]] method of object O with argument “toString”.
6. If Result(5) is not an object, go to step 9.
7. Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.
8. If Result(7) is a primitive value, return Result(7).
9. Generate a runtime error.

When the [[DefaultValue]] method of O is called with no hint, then it behaves as if the hint were Number,
unless O is a Date object (see section 15.13), in which case it behaves as if the hint were String.

8.7 The Reference Type
The internal Reference type is not a language data type. It is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon references in the
manner described here. However, a value of type Reference is used only as an intermediate result of expression
evaluation and cannot be stored as the value of a variable or property.
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The Reference type is used to explain the behavior of such operators as delete, typeof, and the assignment
operators. For example, the left-hand operand of an assignment is expected to produce a reference. The behavior
of assignment could, instead, be explained entirely in terms of a case analysis on the syntactic form of the left-
hand operand of an assignment operator, but for one difficulty: function calls are permitted to return references.
This possibility is admitted purely for the sake of host objects. No built-in ECMAScript function defined by this
specification returns a reference and there is no provision for a user-defined function to return a reference.
(Another reason not to use a syntactic case analysis is that it would be lengthy and awkward, affecting many parts
of the specification.)

Another use of the Reference type is to explain the determination of the this value for a function call.

A Reference is a reference to a property of an object. A Reference consists of two parts, the base object and the
property  name.

The following abstract operations are used in this specification to describe the behavior of references:

• GetBase(V). Returns the base object component of the reference V.
• GetPropertyName(V). Returns the property name component of the reference V.
• GetValue(V). Returns the value of the property indicated by the reference V.
• PutValue(V, W). Changes the value of the property indicated by the reference V to be W.

8.7.1 GetBase(V)

1. If Type(V) is Reference, return the base object component of V.
2. Generate a runtime error.

8.7.2 GetPropertyName(V)

1. If Type(V) is Reference, return the property name component of V.
2. Generate a runtime error.

8.7.3 GetValue(V)

1. If Type(V) is not Reference, return V.
2. Call GetBase(V).
3. If Result(2) is null, generate a runtime error.
4. Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.
5. Return Result(4).

8.7.4 PutValue(V, W)

1. If Type(V) is not Reference, generate a runtime error.
2. Call GetBase(V).
3. If Result(2) is null, go to step 6.
4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W for the

value.
5. Return.
6. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name and W for

the value.
7. Return.

8.8 The List type
The internal List type is not a language data type. It is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon List values in the
manner described here. However, a value of the List type is used only as an intermediate result of expression
evaluation and cannot be stored as the value of a variable or property.

The List type is used to explain the evaluation of argument lists (section 11.2.4) in new expressions and in
function calls. Values of the List type are simply ordered sequences of values. These sequences may be of any
length.
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8.9 The Completion Type
The internal Completion type is not a language data type. It is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon Completion values
in the manner described here. However, a value of the Completion type is used only as an intermediate result of
statement evaluation and cannot be stored as the value of a variable or property.

The Completion type is used to explain the behavior of statements (break, continue, return and throw)
that perform non-local transfers of control. Values of the Completion type are triples of the form (type, value,
target), where  type is one of normal, break, continue, return, or throw,  value is any ECMAScript value, or
empty, and  target is any ECMAScript identifier, or empty.

The term “abrupt completion” refers to any completion with a reason value other than normal.

Invoking the [[Call]] or [[Construct]] method of a Function object, amounts to the evaluation of a Block (see
section 12.1) in an appropriate Execution Context (see section 10). The result of evaluating a Block is of the
Completion Type. This value should not be returned as the result of the method invocation, or it might end up
being stored in a variable or property. Instead, the value field of the completion value becomes the result of the
invocation, except that an empty value is replaced with undefined. If the completion value is of type throw,
execution of the algorithm that invoked the method should proceed as if a runtime error has occurred, see section
5.2.

9 Type Conversion
The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of certain
constructs it is useful to define a set of conversion operators. These operators are not a part of the language; they are
defined here to aid the specification of the semantics of the language. The conversion operators are polymorphic; that
is, they can accept a value of any standard type, but not of type Reference, List, or Completion (the internal types).

9.1 ToPrimitive
The operator ToPrimitive takes a Value argument and an optional PreferredType argument. The operator
ToPrimitive converts its value argument to a non-Object type. If an object is capable of converting to more than
one primitive type, it may use the optional hint PreferredType to favor that type. Conversion occurs according to
the following table:

Input Type Result
Undefined The result equals the input argument (no conversion).
Null The result equals the input argument (no conversion).
Boolean The result equals the input argument (no conversion).
Number The result equals the input argument (no conversion).
String The result equals the input argument (no conversion).
Object Return a default value for the Object. The default value of an object is retrieved

by calling the internal [[DefaultValue]] method of the object, passing the optional
hint PreferredType. The behavior of the [[DefaultValue]] method is defined by
this specification for all native ECMAScript objects (see section 8.6.2.6). If the
return value is of type Object or Reference, a runtime error is generated.

9.2 ToBoolean
The operator ToBoolean converts its argument to a value of type Boolean according to the following table:

Input Type Result
Undefined false
Null false
Boolean The result equals  the input argument (no conversion).
Number The result is false if the argument is +0, −−0, or NaN; otherwise the result is

true.
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String The result is false if the argument is the empty string (its length is zero);
otherwise the result is true.

Object true

9.3 ToNumber
The operator ToNumber converts its argument to a value of type Number according to the following table:

Input Type Result
Undefined NaN
Null +0
Boolean The result is 1 if the argument is true. The result is +0 if the argument is

false.
Number The result equals the input argument (no conversion).
String See grammar and note below.
Object Apply the following steps:

1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot interpret
the string as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

StringNumericLiteral :::
StrWhiteSpaceopt

StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
<TAB>
<SP>
<FF>
<VT>
<CR>
<LF>

StrNumericLiteral :::
StrDecimalLiteral
+ StrDecimalLiteral
- StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral :::
Infinity
 DecimalDigits . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalDigits ExponentPartopt

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit
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DecimalDigit ::: one of
0 1 2 3 4 5 6 7 8 9

ExponentPart :::
ExponentIndicator SignedInteger

ExponentIndicator ::: one of
e E

SignedInteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (section
7.7.3):

• A StringNumericLiteral may be preceded and/or followed by whitespace and/or line terminators.
• A StringNumericLiteral may not use octal notation.
• A StringNumericLiteral that is decimal may have any number of leading 0 digits.

• A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

• A StringNumericLiteral that is empty or contains only whitespaceis converted to +0.

The conversion of a string to a number value is similar overall to the determination of the number value for a
numeric literal (section 7.7.3), but some of the details are different, so the process for converting a string
numeric literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the string numeric literal; second, this mathematical value is
rounded, ideally using IEEE 754 round-to-nearest mode, to a representable value of the number type.

• The MV of StringNumericLiteral ::: (an empty character sequence) is 0.
• The MV of StringNumericLiteral ::: StrWhiteSpace is 0.
• The MV of StringNumericLiteral ::: StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt is the MV of

StrNumericLiteral, no matter whether whitespace is present or not.
• The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.
• The MV of StrNumericLiteral ::: + StrDecimalLiteral is the MV of StrDecimalLiteral.
• The MV of StrNumericLiteral ::: - StrDecimalLiteral is the negative of the MV of StrDecimalLiteral. (Note

that if the MV of StrDecimalLiteral is 0, the negative of this MV is also 0. The rounding rule described
below handles the conversion of this signless mathematical zero to a floating-point +0 or −−0 as appropriate.)

• The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.
• The MV of StrDecimalLiteral ::: Infinity is 1010000 (a value so large that it will round to +∞∞).

• The MV of StrDecimalLiteral ::: DecimalDigits. is the MV of DecimalDigits.

• The MV of StrDecimalLiteral ::: DecimalDigits. DecimalDigits is the MV of the first DecimalDigits plus
(the MV of the second DecimalDigits times 10−n), where n is the number of characters in the second
DecimalDigits.

• The MV of StrDecimalLiteral ::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10e,
where e is the MV of ExponentPart.
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• The MV of StrDecimalLiteral ::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10−n)) times 10e, where n is the number of
characters in the second DecimalDigits and e is the MV of ExponentPart.

• The MV of StrDecimalLiteral :::. DecimalDigits is the MV of DecimalDigits times 10−n, where n is the
number of characters in DecimalDigits.

• The MV of StrDecimalLiteral :::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10e−n,
where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

• The MV of StrDecimalLiteral ::: DecimalDigits is the MV of DecimalDigits.
• The MV of StrDecimalLiteral ::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10e, where

e is the MV of ExponentPart.
• The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.
• The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the

MV of DecimalDigit.
• The MV of ExponentPart ::: ExponentIndicator SignedInteger is the MV of SignedInteger.
• The MV of SignedInteger ::: DecimalDigits is the MV of DecimalDigits.
• The MV of SignedInteger ::: + DecimalDigits is the MV of DecimalDigits.

• The MV of SignedInteger ::: - DecimalDigits is the negative of the MV of DecimalDigits.

• The MV of DecimalDigit ::: 0 or of HexDigit ::: 0 is 0.

• The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.

• The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.

• The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.

• The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.

• The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.

• The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.

• The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is 7.

• The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.

• The MV of DecimalDigit ::: 9 or of HexDigit ::: 9 is 9.

• The MV of HexDigit ::: a or of HexDigit ::: A is 10.

• The MV of HexDigit ::: b or of HexDigit ::: B is 11.

• The MV of HexDigit ::: c or of HexDigit ::: C is 12.

• The MV of HexDigit ::: d or of HexDigit ::: D is 13.

• The MV of HexDigit ::: e or of HexDigit ::: E is 14.

• The MV of HexDigit ::: f or of HexDigit ::: F is 15.

• The MV of HexIntegerLiteral::: 0x HexDigit is the MV of HexDigit.
• The MV of HexIntegerLiteral::: 0X HexDigit is the MV of HexDigit.
• The MV of HexIntegerLiteral::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus

the MV of HexDigit.

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non-whitespace character in the
string numeric literal is ‘-’, in which case the rounded value is −−0. Otherwise, the rounded value must be the
number value for the MV (in the sense defined in section 8.5), unless the literal includes a StrDecimalLiteral
and the literal has more than 20 significant digits, in which case the number value may be either the number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an
ExponentPart and (either it is not 0 or (there is a nonzero digit to its left and there is a nonzero digit, not in the
ExponentPart, to its right)).

9.4 ToInteger
The operator ToInteger converts its argument to an integral numeric value. This operator functions as follows:
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1. Call ToNumber on the input argument.
2. If Result(1) is NaN, return +0.
3. If Result(1) is +0, −−0, +∞∞, or −−∞∞, return Result(1).
4. Compute sign(Result(1)) * floor(abs(Result(1))).
5. Return Result(4).

9.5 ToInt32: (signed 32 bit integer)

The operator ToInt32 converts its argument to one of 232 integer values in the range −231 through 231−1, inclusive.
This operator functions as follows:

1. Call ToNumber on the input argument.
2. If Result(1) is NaN, +0, −−0, +∞∞, or −−∞∞, return +0.
3. Compute sign(Result(1)) * floor(abs(Result(1))).
4. Compute Result(3) modulo 232; that is, a finite integer value k of Number type with positive sign and less than

232 in magnitude such the mathematical difference of Result(3) and k is mathematically an integer multiple of
232.

5. If Result(4) is greater than or equal to 231, return Result(5)−232; otherwise return Result(5).

Notes:

The ToInt32 operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

Note also that ToInt32(ToUint32(x)) is equal to ToInt32(x) for all values of x.

(It is to preserve this latter property that +∞ and −∞ are mapped to +0.)

Note that ToInt32 maps −0 to +0.

9.6 ToUint32: (unsigned 32 bit integer)

The operator ToUint32 converts its argument to one of 232 integer values in the range 0 through 232−1, inclusive.
This operator functions as follows:

1. Call ToNumber on the input argument.
2. If Result(1) is NaN, +0, −−0, +∞∞, or −−∞∞, return +0.
3. Compute sign(Result(1)) * floor(abs(Result(1))).
4. Compute Result(3) modulo 232; that is, a finite integer value k of Number type with positive sign and less than

232 in magnitude such the mathematical difference of Result(3) and k is mathematically an integer multiple of
232.

5. Return Result(4).

Notes:

Step 5 is the only difference between ToUint32 and ToInt32.

The ToUint32 operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

Note also that ToUint32(ToInt32(x)) is equal to ToUint32(x) for all values of x.

(It is to preserve this latter property that +∞ and −∞ are mapped to +0.)

Note that ToUint32 maps −0 to +0.

9.7 ToUint16: (unsigned 16 bit integer)

The operator ToUint16 converts its argument to one of 216 integer values in the range 0 through 216−1, inclusive.
This operator functions as follows:

1. Call ToNumber on the input argument.
2. If Result(1) is NaN, +0, −−0, +∞∞, or −−∞∞, return +0.
3. Compute sign(Result(1)) * floor(abs(Result(1))).
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4. Compute Result(3) modulo 216; that is, a finite integer value k of Number type with positive sign and less than
216 in magnitude such the mathematical difference of Result(3) and k is mathematically an integer multiple of
216.

5. Return Result(4).

Notes:

The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUnit16.

Note that ToUint16 maps −0 to +0.

9.8 ToString
The operator ToString converts its argument to a value of type String according to the following table:

Input Type Result
Undefined “undefined”
Null “null”
Boolean If the argument is true, then the result is “true”.

If the argument is false, then the result is “false”.
Number See note below.
String Return the input argument (no conversion)
Object Apply the following steps:

1. If the input argument does not have a toString method, go to step 4.
2. Call the toString method of the array or object (with no arguments).
3. Return Result(2).
4. Call ToPrimitive(input argument, hint String).
5. Call ToString(Result(4)).
1. Return Result(5).

9.8.1 ToString Applied to the Number Type

The operator ToString converts a number m to string format as follows:

1. If m is NaN, return the string “NaN”.
2. If m is +0 or −−0, return the string “0”.
3. If m is less than zero, return the string concatenation of the string “-“ and ToString(−m).
4. If m is infinity, return the string “Infinity”.
5. Otherwise, let n, k, and s be integers such that k >= 1, 10k−1 <= s < 10k, the number value for s⋅10n−k is m,

and k is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is
not divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these
criteria.

6. If k <= n <= 21, return the string consisting of the k digits of the decimal representation of s (in order, with
no leading zeroes), followed by n−k occurences of the character ‘0’.

7. If 0 < n <= 21, return the string consisting of the most significant n digits of the decimal representation of
s, followed by a decimal point ‘.’, followed by the remaining k−n digits of the decimal representation of s.

8. If −6 < n <= 0, return the string consisting of the character ‘0’, followed by a decimal point ‘.’, followed
by −n occurences of the character ‘0’, followed by the k digits of the decimal representation of s.

9. Otherwise, if k = 1, return the string consisting of the single digit of s, followed by lowercase character ‘e’,
followed by a plus sign ‘+’ or minus sign ‘−−’ according to whether n−1 is positive or negative, followed by
the decimal representation of the integer abs(n−1) (with no leading zeros).

10. Return the string consisting of the most significant digit of the decimal representation of s, followed by a
decimal point ‘.’, followed by the remaining k−1 digits of the decimal representation of s, followed by the
lowercase character ‘e’, followed by a plus sign ‘+’ or minus sign ‘−−’ according to whether n−1 is positive
or negative, followed by the decimal representation of the integer abs(n−1) (with no leading zeros).

Note that if x is any number value other than −−0, then ToNumber(ToString(x)) is exactly the same number
value as x.
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As noted, the least significant digit of s is not always uniquely determined by the requirements listed in step 5.
The following specification for step 5 was considered, but not adopted:

(This paragraph is not part of the ECMAScript specification.) Let n, k, and s be be integers such that k ≥ 1,
10k−1 <= s < 10k, the number value for s⋅10n−k is m, and k is as small as possible. If there are multiple
possibilities for s, choose the value of s for which s⋅10n−k is closest in value to m. If there are two such
possible values of s, choose the one that is even.

While such a strategy is recommended to implementors, the actual rule is somewhat more permissive.
Implementors of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-
decimal conversion of floating-point numbers [Gay 1990].

9.9 ToObject
The operator ToObject converts its argument to a value of type Object according to the following table:

Input Type Result
Undefined Generate a runtime error.
Null Generate a runtime error.
Boolean Create a new Boolean object whose default value is the value of the boolean. See

section 15.10 for a description of Boolean objects.
Number Create a new Number object whose default value is the value of the number. See

section 15.11 for a description of Number objects.
String Create a new String object whose default value is the value of the string. See

section 15.8 for a description of String objects.
Object The result is the input argument (no conversion).

10 Execution Contexts
When control is transferred to ECMAScript executable code, control is entering an execution context. Active
execution contexts logically form a stack. The top execution context on this logical stack is the running execution
context.

10.1 Definitions

10.1.1 Function Objects

There are four types of function objects:

• Declared functions are defined in source text by a FunctionDeclaration.

• Anonymous functions are created dynamically by using the built-in Function object as a constructor,
which is referred to as an instantiating Function.

• Implementation-supplied functions are created at the request of the host with source text supplied by the
host. The mechanism for their creation is implementation-dependent.

• Internal functions are built-in objects of the language, such as parseInt and Math.exp. An
implementation may also provide implementation-dependent internal functions that are not described in this
specification. These functions do not contain executable code defined by the ECMAScript grammar, so are
excluded from this discussion of execution contexts.

10.1.2 Types of Executable Code

There are five types of executable ECMAScript source text:

• Global code is source text that is outside all function declarations. More precisely, the global code of a
particular ECMAScript Program consists of all SourceElements in the Program production which come
from the Statement definition.

• Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter to the
built-in eval function is a string, it is treated as an ECMAScript Program. The eval code for a particular
invocation of eval is the global code portion of the string parameter.
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• Function code is source text that is inside a function declaration. More precisely, the function code of a
particular ECMAScript FunctionDeclaration consists of the Block in the definition of FunctionDeclaration.

• Anonymous code is the source text supplied when instantiating Function. More precisely, the last
parameter provided in an instantiation of Function is converted to a string and treated as the
StatementList of the Block of a FunctionDeclaration. If more than one parameter is provided in an
instantiation of Function, all parameters except the last one are converted to strings and concatenated
together, separated by commas. The resulting string is interpreted as the FormalParameterList of a
FunctionDeclaration for the StatementList defined by the last parameter.

• Implementation-supplied code is the source text supplied by the host when creating an implementation-
supplied function. The source text is treated as the StatementList of the Block of a FunctionDeclaration.
Depending on the implementation, the host may also supply a FormalParameterList.

10.1.3 Variable instantiation

Every execution context has associated with it a variable object. Variables declared in the source text are added
as properties of the variable object. For global and eval code, functions defined in the source text are added as
properties of the variable object. Functions defined within other functions are added as properties of the
enclosing function. For function, anonymous, and implementation-supplied code, parameters are added as
properties of the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on the type of
code, but the remainder of the behavior is generic:

• For each formal parameter, as defined in the FormalParameterList, create a property of the variable object
whose name is the Identifier and whose attributes are determined by the type of code. The values of the
parameters are supplied by the caller. If the caller supplies fewer parameter values than there are formal
parameters, the extra formal parameters have value undefined. If two or more formal parameters share
the same name, hence the same property, the corresponding property is given the value that was supplied for
the last parameter with this name. If the value of this last parameter was not supplied by the caller, the value
of the corresponding property is undefined.

• For each FunctionDeclaration in the code which is not written within an enclosed FunctionDeclaration or
WithStatement: in source text order, instantiate a declared function from the FunctionDeclaration and
create a property of the variable object whose name is the Identifier in the FunctionDeclaration, whose
value is the declared function and whose attributes are determined by the type of code. If the variable object
already has a property with this name, replace its value and attributes. Semantically, this step must follow
the creation of the FormalParameterList properties. In particular, if a FunctionDeclaration has the same
name as a formal parameter, the value and attributes of the existing property are replaced.  (When a
FunctionDeclaration is evaluated within another FunctionDeclaration, the value of the property is replaced
with a Closure object – see section 13).

• For each VariableDeclaration in the code which is not written within an enclosed FunctionDeclaration,
create a property of the variable object whose name is the Identifier in VariableDeclaration, whose value is
undefined and whose attributes are determined by the type of code. If there is already a property of the
variable object with the name of a declared variable, the value of the property and its attributes are not
changed. Semantically, this step must follow the creation of the FunctionDeclaration and
FormalParameterList properties. In particular, if a declared variable has the same name as a declared
function or formal parameter, the variable declaration does not disturb the existing property.

10.1.4 Sharp Variable Object

Every execution context has associated with it a sharp variable object. Sharp variables declared with
SharpVarDefinition (7.8, 11.1.4, 11.1.5) are added as properties of the sharp variable object.  Sharp variables
referenced with SharpVarReference (11.1.6) refer to properties of the sharp variable object.

Each new execution context has a new sharp variable object except for eval code, which uses the sharp variable
object of the previous active execution context.
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10.1.5 Scope Chain and Identifier Resolution

Every execution context has associated with it a scope chain. This is a list of objects that are searched when
binding an Identifier. The scope chain consists of the object at the start of the chain and the objects found by
recursively accessing the current value of the [[Parent]] property. When control enters an execution context, the
scope chain is created by linking together a set of new and existing objects, depending on the type of code,
through their [[Parent]] properties. When control leaves the execution context, the previous execution context is
restored. The scope chain of that context, as determined by the first object in its scope chain and the current
values of the [[Parent]] properties, becomes the current scope chain.

During execution, the scope chain of the execution context is affected only by entering and leaving an execution
context, by WithStatement and by explicit changes to the [[Parent]] property of an object on the scope chain
through the __parent__ property name. When execution enters a with block, a new With object is added
to the front of the scope chain; the value of the [[Prototype]] property of that object is the object specified in the
with statement (Error! Reference source not found.).  When execution leaves a with block, whether
normally or via a break, continue or return statement, the object is removed from the scope chain. The
object being removed will always be the first object in the scope chain. The value of the [[Parent]] property of
that object becomes the first object in the current scope chain.

During execution, the syntactic production PrimaryExpression : Identifier is evaluated using the following
algorithm:

1. Get the next object in the scope chain, as determined by the start of the scope chain and the [[Parent]]
properties. If there isn’t one, go to step 5.

2. Call the [[HasProperty]] method of Result(l), passing the Identifier as the property.
3. If Result(2) is not null, return a value of type Reference whose base object is Result(2) and whose property

name is the Identifier.
4. Go to step 1.
5. Return a value of type Reference whose base object is null and whose property name is the Identifier.

The result of binding an identifier is always a value of type Reference with its member name component equal
to the identifier string.

10.1.6 Global Object

There is a unique global object which is created before control enters any execution context. Initially the global
object has the following properties:

• Built-in objects such as Math, String, Date, parseInt, etc. These have attributes { DontEnum }.

• Additional host defined properties. This may include a property whose value is the global object itself, for
example window in HTML.

As control enters execution contexts, and as ECMAScript code is executed, additional properties may be added
to the global object and the initial properties may be changed.

10.1.7 Activation object

When control enters an execution context for declared function code, anonymous code or implementation-
supplied code, an object called the activation object is created and associated with the execution context. The
activation object is initialized with a property with name arguments and property attributes { DontDelete,
DontEnum }. The initial value of this property is the activation object itself.

The internal property [[OldArguments]] of the activation object is set to the value of the arguments property
of the function object being invoked, or null if no such property exists. Next, the following properties are
updated in the activation object:

• The value of the callee property is the function object being executed. This allows anonymous functions
to be recursive.

• The value of the length property is the number of actual argument values supplied by the caller.
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• For each non-negative integer, iarg, less than the value of the length property, a property is created with
name ToString(iarg) and property attributes { DontEnum }. The initial value of this property is the value of
the corresponding actual parameter supplied by the caller. The first actual parameter value corresponds to
iarg = 0, the second to iarg = 1 and so on. In the case when iarg is less than the number of formal
parameters for the function object, this property shares its value with the corresponding formal parameter
property. This means that changing this property changes the corresponding formal parameter and vice
versa. The value sharing mechanism depends on the implementation.

The activation object is used as the new value of the arguments property of the function object. This new
value is installed even if the arguments property already exists and has the ReadOnly attribute (as it will for
native Function objects). (These actions are taken to provide compatibility with a form of program syntax that
is now discouraged: to access the arguments object for function f within the body of f by using the expression
f.arguments. The recommended way to access the arguments object for function f within the body of f is
simply to refer to the variable arguments.)

(Note: the issue of whether the activation object and the arguments object are the same is still under discussion.
The rules given above would cause local variables named length or callee to replace the above properties,
and would hide global variables with these names.  One alternative is to name the actual properties
__length__ and __callee__, and provide a modified [[Get]] for Call objects which would map length
and callee to __length__ and __callee__ if not found.  Since [[HasProperty]] would not change, free
lookups would find any global variables with these names and the returned reference would refer to the global
object, so the subsequent call to [[GetValue]] would ignore the original object.  Qualified lookups would not
find the global names, and the remapping would occur; so qualified access to length and callee would
refer to __length__ and __callee__ in the activation object.)

The activation object is then used as the variable object for the purposes of variable instantiation.

When a value is to be returned from the call to a function, its activation object is no longer needed and may be
permanently decommissioned. At this time, if the activation object has no [[OldArguments]] property, then the
arguments property of the function object is deleted; otherwise, the value of the [[OldArguments]] property
of the activation object is stored into the arguments property of the function object (an arguments property
is created for the function object if necessary). This old value is stored even if the arguments property already
exists and has the ReadOnly attribute (as it will for native Function objects).

TBD: The arguments, callee and length properties must not conflict with parameters and local
variables with the same names. One possibility is to rename these properties __arguments__,
__callee__ and __length__ and modify Call.prototype.[[Get]] so that when called on one of the original
names, and that property is not defined within the Call object, the corresponding “__xx__” property is used
instead. This provides automatic hiding when a conflicting name is used as a parameter or local variable, or in
an assignment.

10.1.8 This

There is a this value associated with every active execution context. The this value depends on the caller
and the type of code being executed and is determined when control enters the execution context. The this
value associated with an execution context is immutable.

10.2 Entering An Execution Context
When control enters an execution context, the scope chain is formed, the variable object is determined, variable
instantiation is performed, and the this value is determined.

The formation of the scope chain, the determination of the variable object, variable instantiation, and the
determination of the this value depend on the type of code being entered.

The choice of objects used as the this value, as the variable object and as the first object of the scope chain
remains the same while control remains in the execution context, even if the structure of the remainder of the
scope chain is altered by assignment to __parent__.
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10.2.1 Global Code

• The first object in the scope chain is the global object.

• Variable instantiation is performed using the global object as the variable object and using empty property
attributes.

• The this value is the global object.

• The sharp variable object is unique to the execution context.

10.2.2 Eval Code

When control enters an execution context for eval code, the previous active execution context, referred to as the
calling context, is used to determine the scope chain, the variable object, and the this value. If there is no
calling context, then the formation the scope chain, variable instantiation, and the determination of the this
value are performed just as for global code.

• The first object in the scope chain is the same as that for the previous execution context.

• Variable instantiation is performed using the calling context’s variable object.

• The this value is the same as the this value of the calling context.

• The sharp variable object is the same as that of the previous execution context.

10.2.3 Function and Anonymous Code

• The first object in the scope chain is the activation object.

• The [[Parent]] property of the activation object is determined as follows:

− If the callee’s [[Parent]] is a function object with a non-null arguments property, the activation
object’s [[Parent]] property is initialized to the callee’s parent’s arguments property

− Otherwise, the activation object’s [[Parent]] property is initialized the callee’s [[Parent]] property.

• Variable instantiation is performed using the activation object as the variable object and using property
attributes { DontDelete }.

• The caller provides the this value. If the this value provided by the caller is not an object (including the
case where it is null), then the this value is the global object.  See section 11.2.3.

• The sharp variable object is unique to the execution context.

10.2.4 Implementation-supplied Code

The scope chain, activation object, variable instantiation and sharp variable object are determined just as for
function and anonymous code. The this value is determined in an implementation-dependent manner.

11 Expressions
11.1 Primary Expressions

Syntax

PrimaryExpression :
this
Identifier
Literal
ArrayLiteral
ObjectLiteral
SharpVarReference
( Expression )
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11.1.1 The this keyword

The this keyword evaluates to the this value of the execution context.

11.1.2 Identifier reference

An Identifier is evaluated using the scoping rules stated in section 10.1.4. The result of an Identifier is always a
value of type Reference.

11.1.3 Literal reference

A Literal is evaluated as described in section 7.7.

11.1.4 Array Initializer

An array initializer is an expression describing the initialization of an Array object, written in a form
resembling a literal. It is a list of zero or more expressions, each of which represents an array element, enclosed
in square brackets. The elements need not be literals; they are evaluated each time the array initializer is
evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the
element list is not preceded by an AssignmentExpression (i.e. a comma at the beginning or after another
comma), the missing array element contributes to the length of the Array and increases the index of subsequent
elements. Elided array elements are not defined.

If an array initializer begins with SharpVarDefinition, the corresponding sharp variable property in the current
execution context is set to the newly created array before the elements of the initializer are evaluated.

Syntax

ArrayLiteral :
ArrayLiteralHead ]
ElementList ]
ElementList , Elisionopt ]

ElementList :
ArrayLiteralHead Elisionopt AssignmentExpression
ElementList , Elisionopt AssignmentExpression

ArrayLiteralHead :
SharpVarDefinitionopt [

Elision :
,
Elision ,

Semantics

The production  ArrayLiteralHead: SharpVarDefinitionopt [  is evaluated as follows:

1. Create a new array as if by the expression new Array().
2. If SharpVarDefinition is present, give the corresponding sharp variable property in the current execution

context the value Result(1).
3. Return Result(1).

The production  ArrayLiteral: ArrayLiteralHead ]  is evaluated as follows:

1. Evaluate ArrayLiteralHead.
2. Return Result(1).

The production  ArrayLiteral: ElementList ]  is evaluated as follows:

1. Evaluate ElementList.
2. Return Result(1).
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The production  ArrayLiteral: ElementList , Elisionopt]  is evaluated as follows:

1. Evaluate ElementList.
2. Evaluate Elision; if not present, use the numeric value zero.
3. Call PutValue(Result(1).length,Result(1).length+Result(2)).
4. Return Result(1).

The production  ElementList: ArrayLiteralHead Elisionopt AssignmentExpression  is evaluated as follows:

1. Evaluate ArrayLiteralHead.
2. Evaluate Elision; if not present, use the numeric value zero.
3. Evaluate AssignmentExpression.
4. Call GetValue(Result(3)).
5. Call PutValue(Result(1)[Result(2)], Result(4)).
6. Return Result(1)

The production  ElementList:  ElementList , Elisionopt AssignmentExpression  is evaluated as follows:

1. Evaluate ElementList.
2. Evaluate Elision; if not present, use the numeric value zero.
3. Evaluate AssignmentExpression.
4. Call GetValue(Result(3)).
5. Call PutValue(Result(1)[ToUint32(Result(1).length)+Result(2)], Result(4)).
6. Return Result(1)

The production  Elision: ,  is evaluated as follows:

1. Return the numeric value 1.

The production  Elision: Elision ,  is evaluated as follows:

1. Evaluate Elision.
2. Return (Result(1)+1).

11.1.5 Object Initializer

An object initializer is an expression describing the initialization of an Object, written in a form resembling a
literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces. The
values need not be literals; they are evaluated each time the object initializer is evaluated.

If an object initializer begins with SharpVarDefinition, the corresponding sharp variable property in the current
execution context is set to the newly created array before the elements of the initializer are evaluated.

Syntax

ObjectLiteral :
ObjectLiteralHead }
PropertyNameAndValueList }

PropertyNameAndValueList :
ObjectLiteralHead PropertyName : AssignmentExpression
PropertyNameAndValueList , PropertyName : AssignmentExpression

ObjectLiteralHead :
SharpVarDefinitionopt {

PropertyName :
Identifier
StringLiteral
NumericLiteral

Semantics
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The production  ObjectLiteralHead: SharpVarDefinitionopt {  is evaluated as follows:

1. Create a new object as if by the expression new Object().
2. If SharpVarDefinition is present, give the corresponding sharp variable property in the current execution

context the value Result(1).
3. Return Result(1).

The production  ObjectLiteral:  ObjectLiteralHead }  is evaluated as follows:

1. Evaluate ObjectLiteralHead.
2. Return Result(1).

The production  ObjectLiteral: PropertyNameAndValueList }  is evaluated as follows:

1. Evaluate PropertyNameAndValueList.
2. Return Result(1);

The production  PropertyNameAndValueList: ObjectLiteralHead PropertyName : AssignmentExpression
is evaluated as follows:

1. Evaluate ObjectLiteralHead.
2. Evaluate PropertyName.
3. Evaluate AssignmentExpression.
4. Call GetValue(Result(3)).
5. Call PutValue(Result(1)[Result(2)], Result(4)).
6. Return Result(1).

The production
     PropertyNameAndValueList:  PropertyNameAndValueList , PropertyName : AssignmentExpression
is evaluated as follows:

1. Evaluate PropertyNameAndValueList.
2. Evaluate PropertyName.
3. Evaluate AssignmentExpression.
4. Call GetValue(Result(3)).
5. Call PutValue(Result(1)[Result(2)], Result(4)).
6. Return Result(1).

The production  PropertyName : Identifier  is evaluated as follows:

1. Form a string literal containing the same sequence of characters as the Identifier.
2. Return Result(1).

The production  PropertyName : StringLiteral  is evaluated as follows:

1. Return the value of the StringLiteral.

The production  PropertyName : NumericLiteral  is evaluated as follows:

1. Form the value of the NumericLiteral.
2. Return ToString(Result(1)).

11.1.6 Sharp Variable Reference

Sharp variable references may appear only within array and object initializers.  The value of a reference is the
value of the sharp variable property in the current execution context (section 10.1.4).  If no such property exists,
the value is undefined.

11.1.7 The Grouping Operator

The production PrimaryExpression : ( Expression ) is evaluated as follows:

1. Evaluate Expression. This may be of type Reference.
2. Return Result(1).
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Note that this algorithm does not apply GetValue to Result(1). The principal motivation for this is so that
operators such as delete and typeof may be applied to parenthized expressions.

11.2 Left-Hand-Side Expressions

Syntax

MemberExpression :
PrimaryExpression
MemberExpression [ Expression ]
MemberExpression . Identifier
new MemberExpression Arguments

NewExpression :
MemberExpression
new NewExpression

CallExpression :
MemberExpression Arguments
CallExpression Arguments
CallExpression [ Expression ]
CallExpression . Identifier

Arguments :
( )
( ArgumentList  )

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

LeftHandSideExpression :
NewExpression
CallExpression

11.2.1 Property Accessors

Properties are accessed by name, using either the dot notation:

MemberExpression . Identifier
CallExpression . Identifier

or the bracket notation:

MemberExpression [ Expression ]
CallExpression [ Expression ]

The dot notation is explained by the following syntactic conversion:

11.2.1.1.1.1.1.1.1 MemberExpression . Identifier

is identical in its behavior to

11.2.1.1.1.1.1.1.2 MemberExpression [ <identifier-string> ]

and similarly

11.2.1.1.1.1.1.1.3 CallExpression . Identifier

is identical in its behavior to
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11.2.1.1.1.1.1.1.4 CallExpression [ <identifier-string> ]

where <identifier-string> is a string literal containing the same sequence of characters as the Identifier.

The production MemberExpression : MemberExpression [ Expression ] is evaluated as follows:

1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. Evaluate Expression.
4. Call GetValue(Result(3)).
5. Call ToObject(Result(2)).
6. Call ToString(Result(4)).
7. Return a value of type Reference whose base object is Result(5) and whose property name is Result(6).

The production CallExpression : CallExpression [ Expression ] is evaluated in exactly the same manner,
except that the contained CallExpression is evaluated in step 1.

11.2.2 The new operator

The production NewExpression : new NewExpression is evaluated as follows:

1. Evaluate NewExpression.
2. Call GetValue(Result(1)).
3. If Type(Result(2)) is not Object, generate a runtime error.
4. If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
5. Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of arguments).
6. If Type(Result(5)) is not Object, generate a runtime error.
7. Return Result(5).

The production MemberExpression : new MemberExpression Arguments is evaluated as follows:

1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. Evaluate Arguments, producing an internal list of argument values (section 11.2.4).
4. If Type(Result(2)) is not Object, generate a runtime error.
5. If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
6. Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument values.
7. If Type(Result(6)) is not Object, generate a runtime error.
8. Return Result(6).

11.2.3 Function Calls

The production CallExpression : MemberExpression Arguments is evaluated as follows:

3. Evaluate MemberExpression.
4. Evaluate Arguments, producing an internal list of argument values (section 11.2.4).
5. Call GetValue(Result(1)).
6. If Type(Result(3)) is not Object, generate a runtime error.
7. If Result(3) does not implement the internal [[Call]] method, generate a runtime error.
8. If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Result(6) is null.
9. If Result(6) is an activation object, Result(7) is null. Otherwise, Result(7) is the same as Result(6).
10. Call the [[Call]] method on Result(3), providing Result(7) as the this value and providing the list

Result(2) as the argument values.
11. Return Result(8).

The production CallExpression : CallExpression Arguments  is evaluated in exactly the same manner, except
that the contained CallExpression is evaluated in step 1.

Note: Result(8) will never be of type Reference if Result(3) is a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementation-dependent.

11.2.4 Argument Lists

The evaluation of an argument list produces an internal list of values (section 8.8).
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The production Arguments : ( ) is evaluated as follows:

1. Return an empty internal list of values.

The production Arguments : ( ArgumentList ) is evaluated as follows:

1. Evaluate ArgumentList.
2. Return Result(1).

The production ArgumentList : AssignmentExpression is evaluated as follows:

1. Evaluate AssignmentExpression.
2. Call GetValue(Result(1)).
3. Return an internal list whose sole item is Result(2).

The production ArgumentList : ArgumentList , AssignmentExpression is evaluated as follows:

1. Evaluate ArgumentList.
2. Evaluate AssignmentExpression.
3. Call GetValue(Result(2)).
4. Return an internal list whose length is one greater than the length of Result(1) and whose items are the

items of Result(1), in order, followed at the end by Result(3), which is the last item of the new list.

11.3 Postfix expressions

Syntax

PostfixExpression :
LeftHandSideExpression
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] --

11.3.1 Postfix increment operator

The production MemberExpression : MemberExpression ++ is evaluated as follows:

1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. Add the value 1 to Result(3), using the same rules as for the + operator (section 11.6.3).
5. Call PutValue(Result(1), Result(4)).
6. Return Result(3).

11.3.2 Postfix decrement operator

The production MemberExpression : MemberExpression—is evaluated as follows:

1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. Subtract the value 1 from Result(3), using the same rules as for the - operator (section 11.6.3).
5. Call PutValue(Result(1), Result(4)).
6. Return Result(3).

11.4 Unary operators

Syntax
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UnaryExpression :
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression—UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

11.4.1 The delete operator

The production UnaryExpression : delete UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetBase(Result(1)).
3. Call GetPropertyName(Result(1)).
4. If Type(Result(2)) is not Object, return true.
5. If Result(2) does not implement the internal [[Delete]] method, go to step 8.
6. Call the [[Delete]] method on Result(2), providing Result(3) as the property name to delete.
7. Return Result(6).
8. Call the [[HasProperty]] method on Result(2), providing Result(3) as the property name to check for.
9. If Result(8) is not null, return false.
10. Return true.

11.4.2 The void operator

The production UnaryExpression : void UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Return undefined.

11.4.3 The typeof operator

The production UnaryExpression : typeof UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
2. If Type(Result(1)) is Reference and GetBase(Result(1)) is null, return “undefined”.
3. Call GetValue(Result(1)).
4. Return a string determined by Type(Result(3)) according to the following table:

Type Result
Undefined “undefined”
Null “object”
Boolean “boolean”
Number “number”
String “string”
Object (native and
doesn’t implement
[[Call]])

“object”

Object (native and
implements [[Call]])

“function”

Object (host) Implementation-dependent

11.4.4 Prefix increment operator

The production UnaryExpression : ++ UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
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2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. Add the value 1 to Result(3), using the same rules as for the + operator (section 11.6.3).
5. Call PutValue(Result(1), Result(4)).
6. Return Result(4).

11.4.5 Prefix decrement operator

The production UnaryExpression : -- UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. Subtract the value 1 from Result(3), using the same rules as for the - operator (section 11.6.3).
5. Call PutValue(Result(1), Result(4)).
6. Return Result(4).

11.4.6 Unary + operator

The unary + operator converts its operand to Number type.

The production UnaryExpression : + UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. Return Result(3).

11.4.7 Unary - operator

The unary - operator converts its operand to Number type and then negates it. Note that negating +0 produces
−−0, and negating −−0 produces +0.

The production UnaryExpression : - UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. If Result(3) is NaN, return NaN.
5. Negate Result(3); that is, compute a number with the same magnitude but opposite sign.
6. Return Result(5).

11.4.8 The bitwise NOT operator ( ~ )

The production UnaryExpression : ~ UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToInt32(Result(2)).
4. Apply bitwise complement to Result(3). The result is a signed 32-bit integer.
5. Return Result(4).

11.4.9 Logical NOT operator ( ! )

The production UnaryExpression : ! UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is true, return false.
5. Return true.

11.5 Multiplicative operators

Syntax
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MultiplicativeExpression :
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

Semantics

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands for one
of the operators in the above definitions, is evaluated as follows:

1. Evaluate MultiplicativeExpression.
2. Call GetValue(Result(1)).
3. Evaluate UnaryExpression.
4. Call GetValue(Result(3)).
5. Call ToNumber(Result(2)).
6. Call ToNumber(Result(4)).
7. Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the notes below (11.5.1, 11.5.2,

11.5.3).
8. Return Result(7).

11.5.1 Applying the * operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative.
Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 double-precision arithmetic:

• If either operand is NaN, the result is NaN.

• The sign of the result is positive if both operands have the same sign, negative if the operands have different
signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule already
stated above.

• Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is determined by
the rule already stated above.

• In the remaining cases, where neither an infinity or NaN is involved, the product is computed and rounded
to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large to
represent, the result is then an infinity of appropriate sign. If the magnitude is too small to represent, the
result is then a zero of appropriate sign. The ECMAScript language requires support of gradual underflow
as defined by IEEE 754.

11.5.2 Applying the / operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:

• If either operand is NaN, the result is NaN.

• The sign of the result is positive if both operands have the same sign, negative if the operands have different
signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a zero results in an infinity. The sign is determined by the rule already stated
above.
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• Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined by the
rule already stated above.

• Division of a finite value by an infinity results in zero. The sign is determined by the rule already stated
above.

• Division of a zero by a zero results in NaN; division of zero by any other finite value results in zero, with
the sign determined by the rule already stated above.

• Division of a non-zero finite value by a zero results in a signed infinity. The sign is determined by the rule
already stated above.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is
too large to represent, the operation overflows; the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, the operation underflows and the result is a zero of the appropriate sign.
The ECMAScript language requires support of gradual underflow as defined by IEEE 754.

11.5.3 Applying the % operator

The binary % operator is said to yield the remainder of its operands from an implied division; the left operand is
the dividend and the right operand is the divisor. In C and C++, the remainder operator accepts only integral
operands, but in ECMAScript, it also accepts floating-point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
“remainder” operation defined by IEEE 754. The IEEE 754 “remainder” operation computes the remainder
from a rounding division, not a truncating division, and so its behavior is not analogous to that of the usual
integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to behave
in a manner analogous to that of the Java integer remainder operator; this may be compared with the C library
function fmod.

The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:

• If either operand is NaN, the result is NaN.

• The sign of the result equals the sign of the dividend.

• If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

• If the dividend is finite and the divisor is an infinity, the result equals the dividend.

• If the dividend is a zero and the divisor is finite, the result is the same as the dividend.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point
remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n − (d * q) where
q is an integer that is negative only if n/d is negative and positive only if n/d is positive, and whose
magnitude is as large as possible without exceeding the magnitude of the true mathematical quotient of n
and d.

11.6 Additive operators

Syntax

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

11.6.1 The addition operator ( + )

The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as follows:

1. Evaluate AdditiveExpression.
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2. Call GetValue(Result(1)).
3. Evaluate MultiplicativeExpression.
4. Call GetValue(Result(3)).
5. Call ToPrimitive(Result(2)).
6. Call ToPrimitive(Result(4)).
7. If Type(Result(5)) is String or Type(Result(6)) is String, go to step 12. (Note that this step differs from step

3 in the algorithm for comparison for the relational operators in using or instead of and.)
8. Call ToNumber(Result(5)).
9. Call ToNumber(Result(6)).
10. Apply the addition operation to Result(8) and Result(9). See the note below (11.6.3).
11. Return Result(10).
12. Call ToString(Result(5)).
13. Call ToString(Result(6)).
14. Concatenate Result(12) followed by Result(13).
15. Return Result(14).

Note that no hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except
Date objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a
hint as if the hint String were given. Host objects may handle the absence of a hint in some other manner.

11.6.2 The subtraction operator ( - )

The production AdditiveExpression : AdditiveExpression - MultiplicativeExpression is evaluated as follows:

1. Evaluate AdditiveExpression.
2. Call GetValue(Result(1)).
3. Evaluate MultiplicativeExpression.
4. Call GetValue(Result(3)).
5. Call ToNumber(Result(2)).
6. Call ToNumber(Result(4)).
7. Apply the subtraction operation to Result(5) and Result(6). See the note below (11.6.3).
8. Return Result(7).

11.6.3 Applying the additive operators (+, -) to numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:

• If either operand is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and a finite value is equal to the infinite operand.

• The sum of two negative zeros is −−0. The sum of two positive zeros, or of two zeros of opposite sign, is +0.

• The sum of a zero and a nonzero finite value is equal to the nonzero operand.

• The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands have
the same sign or have different magnitudes, the sum is computed and rounded to the nearest representable
value using IEEE 754 round-to-nearest mode. If the magnitude is too large to represent, the operation
overflows and the result is then an infinity of appropriate sign. The ECMAScript language requires support
of gradual underflow as defined by IEEE 754.
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The - operator performs subtraction when applied to two operands of numeric type, producing the difference of
its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric operands
a and b, it is always the case that a-b produces the same result as a+(-b).

11.7 Bitwise shift operators

Syntax

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Semantics

The result of evaluating ShiftExpression is always truncated to 32 bits. If the result of evaluating ShiftExpression
produces a fractional component, the fractional component is discarded. The result of evaluating an
AdditiveExpresion that is the right-hand operand of a shift operator is always truncated to five bits.

11.7.1 The left shift operator ( << )

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows:

1. Evaluate ShiftExpression.
2. Call GetValue(Result(1)).
3. Evaluate AdditiveExpression.
4. Call GetValue(Result(3)).
5. Call ToInt32(Result(2)).
6. Call ToUint32(Result(4)).
7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.
8. Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.
9. Return Result(8).

11.7.2 The signed right shift operator ( >> )

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression : ShiftExpression >> AdditiveExpression is evaluated as follows:

1. Evaluate ShiftExpression.
2. Call GetValue(Result(1)).
3. Evaluate AdditiveExpression.
4. Call GetValue(Result(3)).
5. Call ToInt32(Result(2)).
6. Call ToUint32(Result(4)).
7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.
8. Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is propagated. The

result is a signed 32 bit integer.
9. Return Result(8).

11.7.3 The unsigned right shift operator ( >>> )

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression : ShiftExpression >>> AdditiveExpression is evaluated as follows:

1. Evaluate ShiftExpression.
2. Call GetValue(Result(1)).
3. Evaluate AdditiveExpression.
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4. Call GetValue(Result(3)).
5. Call ToUint32(Result(2)).
6. Call ToUint32(Result(4)).
7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.
8. Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The result is

an unsigned 32 bit integer.
9. Return Result(8).

11.8 Relational operators

Syntax

RelationalExpression :
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression

Semantics

The result of evaluating RelationalExpression is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

11.8.1 The less-than operator ( < )

The production RelationalExpression: RelationalExpression < ShiftExpression is evaluated as follows:

1. Evaluate RelationalExpression.
2. Call GetValue(Result(1)).
3. Evaluate ShiftExpression.
4. Call GetValue(Result(3)).
5. Perform the comparison Result(2) < Result(4). (See section 11.8.5)
6. If Result(5) is undefined, return false. Otherwise, return Result(5).

11.8.2 The greater-than operator ( > )

The production RelationalExpression: RelationalExpression > ShiftExpression is evaluated as follows:

1. Evaluate RelationalExpression.
2. Call GetValue(Result(1)).
3. Evaluate ShiftExpression.
4. Call GetValue(Result(3)).
5. Perform the comparison Result(4) < Result(2).  (See section 11.8.5)
6. If Result(5) is undefined, return false. Otherwise, return Result(5).

11.8.3 The less-than-or-equal operator ( <= )

The production RelationalExpression: RelationalExpression <= ShiftExpression is evaluated as follows:

1. Evaluate RelationalExpression.
2. Call GetValue(Result(1)).
3. Evaluate ShiftExpression.
4. Call GetValue(Result(3)).
5. Perform the comparison Result(4) < Result(2).  (See section 11.8.5)
6. If Result(5) is true or undefined, return false. Otherwise, return true.

11.8.4 The greater-than-or-equal operator ( >= )

The production RelationalExpression: RelationalExpression >= ShiftExpression is evaluated as follows:

1. Evaluate RelationalExpression.
2. Call GetValue(Result(1)).
3. Evaluate ShiftExpression.
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4. Call GetValue(Result(3)).
5. Perform the comparison Result(2) < Result(4).  (See section 11.8.5)
6. If Result(5) is true or undefined, return false. Otherwise, return true.

11.8.5 The abstract relational comparison algorithm

The comparison x < y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). Such a comparison is performed as follows:

1. Call ToPrimitive(x, hint Number).
2. Call ToPrimitive(y, hint Number).
3. If Type(Result(1)) is String and Type(Result(2)) is String, go to step 16. (Note that this step differs from

step 7 in the algorithm for the addition operator + in using and instead of or.)
4. Call ToNumber(Result(1)).
5. Call ToNumber(Result(2)).
6. If Result(4) is NaN, return undefined.
7. If Result(5) is NaN, return undefined.
8. If Result(4) and Result(5) are the same number value, return false.
9. If Result(4) is +0 and Result(5) is −−0, return false.
10. If Result(4) is −−0 and Result(5) is +0, return false.
11. If Result(4) is +∞∞, return false.
12. If Result(5) is +∞∞, return true.
13. If Result(5) is −−∞∞, return false.
14. If Result(4) is −−∞∞, return true.
15. If the mathematical value of Result(4) is less than the mathematical value of Result(5)—note that these

mathematical values are both finite and not both zero—return true. Otherwise, return false.
16. If Result(2) is a prefix of Result(1), return false. (A string value p is a prefix of string value q if q can be the

result of concatenating p and some other string r. Note that any string is a prefix of itself, because  r may be
the empty string.)

17. If Result(1) is a prefix of Result(2), return true.
18. Let k be the smallest nonnegative integer such that the character at position k within Result(1) is different

from the character at position k within Result(2). (There must be such a k, for neither string is a prefix of
the other.)

19. Let m be the integer that is the Unicode encoding for the character at position k within Result(1).
20. Let n be the integer that is the Unicode encoding for the character at position k within Result(2).
21. If m < n, return true. Otherwise, return false.

Note: the comparison of strings uses a simple lexicographic ordering on sequences of Unicode code point
values. There is no attempt to use the more complex, semantically-oriented definitions of  character or string
equality and collating order defined in the Unicode 2.0 specification.

11.9 Equality operators

Syntax

EqualityExpression :
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression
EqualityExpression === RelationalExpression
EqualityExpression !== RelationalExpression

Semantics

The result of evaluating EqualityExpression is always of type Boolean, reflecting whether the relationship named
by the operator holds between its two operands.

11.9.1 The equals operator ( == )

The production EqualityExpression: EqualityExpression == RelationalExpression is evaluated as follows:
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1. Evaluate EqualityExpression.
2. Call GetValue(Result(1)).
3. Evaluate RelationalExpression.
4. Call GetValue(Result(3)).
5. Perform the comparison Result(4) == Result(2).  (See section 11.9.3)
6. Return Result(5).

11.9.2 The does-not-equal operator ( != )

The production EqualityExpression: EqualityExpression!= RelationalExpression is evaluated as follows:

1. Evaluate EqualityExpression.
2. Call GetValue(Result(1)).
3. Evaluate RelationalExpression.
4. Call GetValue(Result(3)).
5. Perform the comparison Result(4) == Result(2).  (See section 11.9.3)
6. If Result(5) is true, return false. Otherwise, return true.

11.9.3 The abstract equality comparison algorithm

The comparison x == y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is different from Type(y), go to step 14.
2. If Type(x) is Undefined, return true.
3. If Type(x) is Null, return true.
4. If Type(x) is not Number, go to step 11.
5. If x is NaN, return false.
6. If y is NaN, return false.
7. If x is the same number value as y, return true.
8. If x is +0 and y is −−0, return true.
9. If x is −−0 and y is +0, return true.
10. Return false.
11. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length

and same characters in corresponding positions). Otherwise, return false..
12. If Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.
13. Return true if x and y refer to the same object. Otherwise, return false.
14. If x is null and y is undefined, return true.
15. If x is undefined and y is null, return true.
16. If Type(x) is Number and Type(y) is String,

return the result of the comparison x == ToNumber(y).
17. If Type(x) is String and Type(y) is Number,

return the result of the comparison ToNumber(x) == y.
18. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.
19. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
20. If Type(x) is either String or Number and Type(y) is Object,

return the result of the comparison x == ToPrimitive(y).
21. If Type(x) is Object  and Type(y) is either String or Number,

return the result of the comparison ToPrimitive(x) == y.
22. Return false.

Notes:

String comparison can be forced by: “” + a == “” + b.

Numeric comparison can be forced by: a - 0 == b - 0.

Boolean comparison can be forced by: !a == !b.

The equality operators maintain the following invariants:
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1. A != B is equivalent to !(A == B).

2. A == B is equivalent to B == A, except in the order of evaluation of A and B.

Note that the equality operator is not always transitive. For example, there might be two distinct String objects,
each representing the same string value; each String object would be considered equal to the string value by the
== operator, but the two String objects would not be equal to each other.

Note that comparison of strings uses a simple equality test on sequences of Unicode code point values. There is
no attempt to use the more complex, semantically-oriented definitions of character or string equality and
collating order defined in the Unicode 2.0 specification.

11.9.4 The strict equals operator ( === )

The production EqualityExpression: EqualityExpression === RelationalExpression is evaluated as follows:

1. Evaluate EqualityExpression.
2. Call GetValue(Result(1)).
3. Evaluate RelationalExpression.
4. Call GetValue(Result(3)).
5. Perform the comparison Result(4) === Result(2).  (See below.)
6. Return Result(5).

11.9.5 The strict does-not-equal operator ( !== )

The production EqualityExpression: EqualityExpression!== RelationalExpression is evaluated as follows:

1. Evaluate EqualityExpression.
2. Call GetValue(Result(1)).
3. Evaluate RelationalExpression.
4. Call GetValue(Result(3)).
5. Perform the comparison Result(4) === Result(2).  (See below.)
6. If Result(5) is true, return false. Otherwise, return true.

11.9.6 The strict equality comparison algorithm

The comparison x === y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is not Number, go to step 9.
3. If x is NaN, return false.
4. If y is NaN, return false.
5. If x is the same number value as y, return true.
6. If x is +0 and y is −0, return true.
7. If x is −0 and y is +0, return true.
8. Return false.
9. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length and

same characters in corresponding positions). Otherwise, return false.
10. If Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.
11. Return true if x and y refer to the same object. Otherwise, return false.
12. Return false.

11.10 Binary bitwise operators

Syntax

BitwiseANDExpression :
EqualityExpression
BitwiseANDExpression & EqualityExpression
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BitwiseXORExpression :
BitwiseANDExpression
BitwiseXORExpression ^ BitwiseANDExpression

BitwiseORExpression :
BitwiseXORExpression
BitwiseORExpression | BitwiseXORExpression

Semantics

The production A : A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

1. Evaluate A.
2. Call GetValue(Result(1)).
3. Evaluate B.
4. Call GetValue(Result(3)).
5. Call ToInt32(Result(2)).
6. Call ToInt32(Result(4)).
7. Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
8. Return Result(7).

11.11 Binary logical operators

Syntax

LogicalANDExpression :
BitwiseORExpression
LogicalANDExpression && BitwiseORExpression

LogicalORExpression :
LogicalANDExpression
LogicalORExpression || LogicalANDExpression

Semantics

The production LogicalANDExpression : LogicalANDExpression && BitwiseORExpression is evaluated as
follows:

1. Evaluate LogicalANDExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, return Result(2).
5. Evaluate BitwiseORExpression.
6. Call GetValue((Result(5)).
7. Return Result(6).

The production LogicalORExpression : LogicalORExpression || LogicalANDExpression is evaluated as follows:

1. Evaluate LogicalORExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is true, return Result(2).
5. Evaluate LogicalANDExpression.
6. Call GetValue(Result(5)).
7. Return Result(6).

Note: the value produced by a && or || operator is not necessarily of type Boolean. The value produced will
always be the value of one of the two operand expressions.
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11.12 Conditional operator ( ?: )

Syntax

ConditionalExpression :
LogicalORExpression
LogicalORExpression ? AssignmentExpression : AssignmentExpression

Semantics

The production ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression
is evaluated as follows:

1. Evaluate LogicalORExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 8.
5. Evaluate the first AssignmentExpression.
6. Call GetValue(Result(5)).
7. Return Result(6).
8. Evaluate the second AssignmentExpression.
9. Call GetValue(Result(8)).
10. Return Result(9).

Note: the grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java,
which each allow the second subexpression to be an Expression but restrict the third expression to be a
ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment expression to
be governed by either arm of a conditional and to eliminate the confusing and fairly useless case of a comma
expression as the centre expression.

11.13 Assignment operators

Syntax

AssignmentExpression :
ConditionalExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentOperator :: one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

11.13.1 Simple Assignment ( = )

The production AssignmentExpression : LeftHandSideExpression = AssignmentExpression is evaluated as
follows:

1. Evaluate LeftHandSideExpression.
2. Evaluate AssignmentExpression.
3. Call GetValue(Result(2)).
4. Call PutValue(Result(1), Result(3)).
5. Return Result(3).

11.13.2 Compound assignment ( op= )

The production AssignmentExpression : LeftHandSideExpression @ = AssignmentExpression, where @
represents one of the operators indicated above, is evaluated as follows:

1. Evaluate LeftHandSideExpression.
2. Call GetValue(Result(1)).
3. Evaluate AssignmentExpression.
4. Call GetValue(Result(3)).
5. Apply operator @ to Result(2) and Result(4).
6. Call PutValue(Result(1), Result(5)).
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7. Return Result(5).

11.14 Comma operator ( , )

Syntax

Expression :
AssignmentExpression
Expression , AssignmentExpression

Semantics

The production Expression : Expression , AssignmentExpression is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Evaluate AssignmentExpression.
4. Call GetValue(Result(3)).
5. Return Result(4).

12 Statements

Syntax

Statement :
Block
FunctionDeclaration
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabeledStatement
SwitchStatement
ThrowStatement
TryStatement

Semantics
A Statement can be part of a LabeledStatement, which itself can be part of a LabeledStatement, and so on. The
labels introduced this way are collectively referred to as the “current label set” when describing the semantics of
individual statements. A LabeledStatement has no semantic meaning other than the introduction of a label to a
label set. An IterationStatement, or SwitchStatement that is not part of a LabeledStatement is regarded as
possessing a label set containing a single element, empty.

12.1 Block

Syntax

Block :
{ StatementListopt }

StatementList :
Statement
StatementList Statement

Semantics
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The production Block : { } is evaluated as follows:

1. Return (normal, empty, empty).

The production Block : { StatementList }is evaluated as follows:

1. Evaluate StatementList.
2. Return Result(1).

The production StatementList : Statement is evaluated as follows:

1. Evaluate Statement.
2. If an exception value was thrown during the evaluation of  Statement, go to step 7.
3. If a runtime error occurred during the evaluation of Statement, go to step 5.
4. Return Result(1).
5. Construct an appropriate Error object.
6. Return (throw, Result(5), empty).
7. Return (throw, V, empty) where V is the exception value thrown during the evaluation of Statement.

The production StatementList : StatementList Statement is evaluated as follows:

1. Evaluate StatementList.
2. If Result(1) is an abrupt completion, return Result(1).
3. Evaluate Statement.
4. If an exception value was thrown during the evaluation of  Statement, go to step 10.
5. If a runtime error occurred during the evaluation of Statement, go to step 8.
6. If Result(3).value = empty, let V = Result(1).value, otherwise let V = Result(3).value.
7. Return (Result(3).type, V, Result(3).target).
8. Construct an appropriate Error object.
9. Return (throw, Result(8), empty).
10. Return (throw, W, empty) where W is the exception value thrown during the evaluation of Statement.

12.2 Variable statement

Syntax

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclaration :
Identifier Initializeropt

Initializer :
= AssignmentExpression

Description

If the variable statement occurs inside a FunctionDeclaration, the variables are defined with function-local scope
in that function, as described in section 10.1.3. Otherwise, they are defined with global scope, that is, they are
created as members of the global object, as described in section 10.1.6. Variables are created when the execution
scope is entered. A Block does not define a new execution scope. Only Program and FunctionDeclaration produce
a new scope. Variables are initialized to the undefined value when created. A variable with an Initializer is
assigned the value of its AssignmentExpression when the VariableStatement is executed, not when the variable is
created.

Semantics

The production VariableStatement : var VariableDeclarationList ; is evaluated as follows:
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1. Evaluate VariableDeclarationList.
2. Return (normal, empty, empty).

The production VariableDeclarationList : VariableDeclaration is evaluated as follows:

1. Evaluate VariableDeclaration.

The production VariableDeclarationList : VariableDeclarationList , VariableDeclaration is evaluated as follows:

1. Evaluate VariableDeclarationList.
2. Evaluate VariableDeclaration.

The production VariableDeclaration : Identifier is evaluated as follows:

1. Return a string value containing the same sequence of characters as in the Identifier.

The production VariableDeclaration : Identifier Initializer is evaluated as follows:

1. Evaluate Identifier.
2. Evaluate Initializer.
3. Call GetValue(Result(2)).
4. Call PutValue(Result(1), Result(3)).
5. Return a string value containing the same sequence of characters as in the Identifier.

The production Initializer : = AssignmentExpression is evaluated as follows:

1. Evaluate AssignmentExpression.
2. Return Result(1).

12.3 Empty statement

Syntax

EmptyStatement :
;

Semantics

The production EmptyStatement : ; is evaluated as follows:

1. Return (normal, empty, empty).

12.4 Expression statement

Syntax

ExpressionStatement :
Expression ;

Semantics

The production ExpressionStatement : Expression ; is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Return (normal, Result(2), empty).

12.5 The if statement

Syntax

IfStatement :
if ( Expression ) Statement else Statement
if ( Expression ) Statement

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible if
that would otherwise have no corresponding else.
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Semantics

The production IfStatement : if ( Expression ) Statement else Statement is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 8.
5. Evaluate the first Statement.
6. Return Result(5).
7. Evaluate the second Statement.
8. Return Result(7).

The production IfStatement : if ( Expression ) Statement is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, return (normal, empty, empty).
5. Evaluate Statement.
6. Return Result(5).

12.6 Iteration statements

Syntax

IterationStatement :
do Statement while ( Expression );
while ( Expression ) Statement
for ( Expressionopt ; Expressionopt ; Expressionopt ) Statement
for ( var VariableDeclarationList ; Expressionopt ; Expressionopt ) Statement
for ( LeftHandSideExpression in Expression ) Statement
for ( var Identifier Initializeropt in Expression ) Statement

12.6.1 The do…while Statement

The production do Statement while ( Expression ); is evaluated as follows:

1. Let V  = empty.
2. Evaluate Statement.
3. If Result(2).value is not empty, let V = Result(2).value.
4. If Result(2).type = continue and Result(2).target is in the current label set, go to 2.
5. If Result(2).type = break and Result(2).target is in the current label set, return (normal, V, empty).
6. If Result(2) is an abrupt completion, return Result(2).
7. Evaluate Expression.
8. Call GetValue(Result(7)).
9. Call ToBoolean(Result(8)).
10. If Result(9) is true, go to step 2.
11. Return (normal, V, empty);

12.6.2 The while statement

The production IterationStatement : while ( Expression ) Statement is evaluated as follows:

1. Let V  = empty.
2. Evaluate Expression.
3. Call GetValue(Result(2)).
4. Call ToBoolean(Result(3)).
5. If Result(4) is false, return (normal, V, empty).
6. Evaluate Statement.
7. If Result(6).value is not empty, let V = Result(6).value.
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8. If Result(6).type = continue and Result(6).target is in the current label set, go to 2.
9. If Result(6).type = break and Result(6).target is in the current label set, return (normal, V, empty).
10. If Result(6) is an abrupt completion, return Result(6).
11. Go to step 2.

12.6.3 The for statement

The production IterationStatement : for (Expressionopt ; Expressionopt ; Expressionopt) Statement is
evaluated as follows:

1. If the first Expression is not present, go to step 4.
2. Evaluate the first Expression.
3. Call GetValue(Result(2)). (This value is not used.)
4. Let V  = empty.
5. If the second Expression is not present, go to step 10.
6. Evaluate the second Expression.
7. Call GetValue(Result(6)).
8. Call ToBoolean(Result(7)).
9. If Result(8) is false, go to step 19.
10. Evaluate Statement.
11. If Result(10).value is not empty, let V = Result(10).value
12. If Result(10).type = break and Result(10).target is in the current label set, go to step 19.
13. If Result(10).type = continue and Result(10).target is in the current label set, go to step 15..
14. If Result(10) is an abrupt completion, return Result(10).
15. If the third Expression  is not present, go to step 5.
16. Evaluate the third Expression.
17. Call GetValue(Result(16). (This value is not used.)
18. Go to step 5.
19. Return (normal, V, empty).

The production IterationStatement : for ( var VariableDeclarationList ; Expressionopt ; Expressionopt )
Statement is evaluated as follows:

1. Evaluate VariableDeclarationList.
2. Let V  = empty.
3. If the second Expression is not present, go to step 8.
4. Evaluate the second Expression.
5. Call GetValue(Result(4)).
6. Call ToBoolean(Result(5)).
7. If Result(6) is false, go to step 15.
8. Evaluate Statement.
9. If Result(8).value is not empty, let V = Result(8).value.
10. If Result(8).type = break and Result(8).target is in the current label set, go to step 17.
11. If Result(8).type = continue and Result(8).target is in the current label set, go to step 13.
12. If Result(8) is an abrupt completion, return Result(8).
13. If the third Expression is not present, go to step 3.
14. Evaluate the third Expression.
15. Call GetValue(Result(14)). (This value is not used.)
16. Go to step 3.
17. Return (normal, V, empty).

12.6.4 The for…in statement

The production IterationStatement : for ( LeftHandSideExpression in Expression ) Statement is evaluated as
follows:

1. Evaluate the Expression.
2. Call GetValue(Result(1)).
3. Call ToObject(Result(2)).
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4. Let V  = empty.
5. Get the name of the next property of Result(3) that doesn’t have the DontEnum attribute. If there is no such

property, go to step 14.
6. Evaluate the LeftHandSideExpression ( it may be evaluated repeatedly).
7. Call PutValue(Result(6), Result(5)).
8. Evaluate Statement.
9. If Result(8).value is not empty, let V = Result(8).value.
10. If Result(8).type = break and Result(8).target is in the current label set, go to step 14.
11. If Result(8).type = continue and Result(8).target is in the current label set, go to step 5.
12. If Result(8) is an abrupt completion, return Result(8).
13. Go to step 5.
14. Return (normal, V, empty).

The production IterationStatement : for ( var VariableDeclaration in Expression ) Statement is evaluated
as follows:

1. Evaluate VariableDeclaration.
2. Evaluate Expression.
3. Call GetValue(Result(2)).
4. Call ToObject(Result(3)).
5. Let V  = empty.
6. Get the name of the next property of Result(4) that doesn’t have the DontEnum attribute. If there is no such

property, go to step 19.
7. Evaluate Result(1) as if it were an Identifier; see 10.1.4 (yes, it may be evaluated repeatedly).
8. Call PutValue(Result(7), Result(6)).
9. Evaluate Statement.
10. If Result(9).value is not empty, let V = Result(9).value.
11. If Result(9).type = break and Result(9).target is in the current label set, go to step 15.
12. If Result(9).type = continue and Result(9).target is in the current label set, go to step 6.
13. If Result(8) is an abrupt completion, return Result(8).
14. Go to step 6.
15. Return (normal, V, empty).

The mechanics of enumerating the properties (step 5 in the first algorithm, step 6 in the second) is
implementation dependent. The order of enumeration is defined by the object. Properties of the object being
enumerated may be deleted  during enumeration. If a property that has not yet been visited during enumeration
is deleted, then it will not be visited. If new properties are added to the object being enumerated during
enumeration, the newly added properties are not guaranteed to be visited in the active enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of
the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is “shadowed” because
some previous object in the prototype chain has a property with the same name.

12.7 The continue statement

Syntax

ContinueStatement :
continue [no LineTerminator here] Identifieropt ;

Semantics

A program is considered syntactically incorrect if either of the following are true:

• The program contains a continue statement without the optional Identifier, which is not nested, directly or
indirectly (but not crossing function boundaries), within an IterationStatement.

• The program contains a continue statement with the optional Identifier, where Identifier does not appear in
the label set of an enclosing IterationStatement.

A ContinueStatement without an Identifier is evaluated as follows:
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1. Return (continue, empty, empty).

A continue statement with the optional Identifier is evaluated as follows:

1. Return (continue, empty, Identifier).

12.8 The break statement

Syntax

BreakStatement :
break [no LineTerminator here] Identifieropt ;

Semantics

A program is considered syntactically incorrect if either of the following are true:

• The program contains a break statement without the optional Identifier, which is not nested, directly or
indirectly (but not crossing function boundaries), within an IterationStatement or a SwitchStatement.

• The program contains a break statement with the optional Identifier, where Identifier does not appear in the
label set of an enclosing Statement.

A BreakStatement without an Identifier is evaluated as follows:

1. Return (break, empty, empty).

A break statement with an Identifier is evaluated as follows:

1. Return (break, empty, Identifier).

12.9 The return statement

Syntax

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

Semantics

An ECMAScript program is considered syntactically incorrect if it contains a return statement that is not
within the Block of a FunctionDeclaration. It causes a function to cease execution and return a value to the caller.
If Expression is omitted, the return value is the undefined value. Otherwise, the return value is the value of
Expression.

The production ReturnStatement :: return [no LineTerminator here] Expressionopt ; is evaluated as:

1. If the Expression is not present, return (return, undefined, empty).
2. Evaluate Expression.
3. Call GetValue(Result(2)).
4. Return (return, Result(3), empty).

12.10 The with statement

Syntax

WithStatement :
with ( Expression ) Statement

Description

The with statement adds a computed object to the front of the scope chain of the current execution context, then
executes a statement with this augmented scope chain, then restores the scope chain.

Semantics

The production WithStatement : with ( Expression ) Statement is evaluated as follows:
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1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToObject(Result(2)).
4. Add Result(3) to the front of the scope chain.
5. Evaluate Statement using the augmented scope chain from step 4.
6. Remove Result(3) from the front of the scope chain.
7. Return Result(5).

Discussion

Note that no matter how control leaves the embedded Statement, whether normally or by some form of abrupt
completion, the start of the scope chain is always restored to its former state.

12.11 The switch Statement

Syntax

SwitchStatement :
switch ( Expression ) CaseBlock

CaseBlock :
{ CaseClausesopt }
{ CaseClausesopt DefaultClause CaseClausesopt }

CaseClauses :
CaseClause
CaseClauses CaseClause

CaseClause :
case Expression : StatementListopt

DefaultClause :
default : StatementListopt

Semantics

The production SwitchStatement : switch ( Expression ) CaseBlock is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Evaluate CaseBlock, passing it Result(2) as a parameter.
4. If Result(3).type = break and Result(3).target is in the current label set, return (normal, Result(3).value,

empty).
5. Return Result(3).

The production CaseBlock : { CaseClauses DefaultClause CaseClauses } is given an input parameter, input, and
is evaluated as follows:

1. Let A be the list of CaseClause items in the first CaseClauses, in source text order.
2. For the next CaseClause in A, evaluate CaseClause. If there is no such CaseClause, go to step 7.
3. If input is not equal to Result(2), as defined by the !== operator, go to step 2.
4. Evaluate the StatementList of this CaseClause.
5. If Result(4) is an abrupt completion then return Result(4).
6. Go to step 13.
7. Let B be the list of CaseClause items in the second CaseClauses, in source text order.
8. For the next CaseClause in B, evaluate CaseClause. If there is no such CaseClause, go to step 15.
9. If input is not equal to Result(8), as defined by the !== operator, go to step 8.
10. Evaluate the StatementList of this CaseClause.
11. If Result(10) is an abrupt completion then return Result(10).
12. Go to step 18.
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13. For the next CaseClause in A, evaluate the StatementList of this CaseClause. If there is no such CaseClause,
go to step 15.

14. If Result(13) is an abrupt completion then return Result(13).
15. Execute the StatementList of DefaultClause.
16. If Result(15) is an abrupt completion then return Result(15).
17. Let B be the list of CaseClause items in the second CaseClauses, in source text order.
18. For the next CaseClause in B, evaluate the StatementList of this CaseClause. If there is no such CaseClause,

return (normal, empty, empty).
19. If Result(18) is an abrupt completion then return Result(18).
20. Go to step 18.

The production CaseClause : case Expression : StatementListopt is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Return Result(2).

Note that evaluating CaseClause does not execute the associated StatementList. It simply evaluates the Expression
and returns the value, which the CaseBlock algorithm uses to determine which StatementList to start executing.

12.12 Labeled Statements

Syntax

LabeledStatement :
Identifier : Statement

Semantics

A Statement may be prefixed by a label. Labeled statements are only used in conjunction with labeled break and
continue statements. ECMAScript has no goto statement.

An ECMAScript program is considered syntactically incorrect if it contains a LabeledStatement that is enclosed
by a LabeledStatement with the same Identifier as label. This does not apply to labels appearing within the body of
a FunctionDeclaration that is nested, directly or indirectly, within a labeled statement.

The production Identifier : Statement is evaluated by adding Identifier to the label set of Statement and then
evaluating Statement. If the LabeledStatement itself has a non-empty label set, these labels are also added to the
label set of Statement before evaluating it. If the result of evaluating Statement is (break, V, L) where L is equal to
Identifier, the production results in (normal, V, empty).

Prior to the evaluation of a LabeledStatement, the contained Statement is regarded as possessing an empty label
set, except if it is an IterationStatement or a SwitchStatement, in which case it is regarded as possessing a label set
consisting of the single element, empty.

12.13 The throw statement

Syntax

ThrowStatement :
throw [no LineTerminator here] Expression ;

Semantics

The production ThrowStatement :: throw [no LineTerminator here] Expression ; is evaluated as:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Return (throw, Result(2), empty), behaving as if a runtime error has occurred. See section 5.2.

12.14 The try statement

Syntax
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TryStatement :
try Block CatchList
try Block Finally
try Block CatchList Finally

CatchList :
Catch
CatchList Catch

Catch :
catch (Identifier CatchGuardopt) Block

CatchGuard :
if Expression

Finally :
finally Block

Description

The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime error
or a throw statement. The catch clauses provide the exception-handling code.  Entering a catch clause is
similar to calling a function: there is a new execution context and the binding of a value to a formal parameter.

Semantics

The production TryStatement : try Block CatchList is evaluated as follows:

1. Evaluate Block.
2. If Result(1).type is not throw, return Result(1).
3. Evaluate CatchList with parameter Result(1).
4. Return Result(3).

The production TryStatement : try Block Finally is evaluated as follows:

1. Evaluate Block.
2. Evaluate Finally.
3. If Result(2) .type is normal, return Result(1).
4. Return Result(2).

The production TryStatement : try Block CatchList Finally is evaluated as follows:

1. Evaluate Block.
2. Let C = Result(1).
3. If Result(1).type is not throw, go to step 6.
4. Evaluate CatchList with parameter Result(1).
5. If Result(4).type is not normal, Let C = Result(4).
6. Evaluate Finally.
7. If Result(6).type is normal, return C.
8. Return Result(6).

The production CatchList : Catch is evaluated as follows:

1. Evaluate Catch passing it the parameter passed to this production.
2. Return Result(1).

The production CatchList : CatchList Catch is evaluated as follows:

1. Evaluate CatchList passing it the parameter passed to this production.
2. If Result(2) is not identical to the parameter passed to this production, return Result(2).
3. Evaluate Catch passing it the parameter passed to this production.
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4. Return Result(2).

The production Catch : catch (Identifier CatchGuardopt) Block is evaluated as follows:

1. Let C be the parameter that has been passed to this production.
2. Create a new Object object.
3. Call the [[Put]] method of Result(2) with parameters Identifier and C.value.
4. Add Result(2) to the front of the scope chain.
5. If there is no CatchGuard, go to step 11.
6. Evaluate CatchGuard.
7. If an exception value was thrown during the evaluation of CatchGuard, go to step 13.
8. If a runtime error occurred during the evaluation of CatchGuard, go to step 13.
9. If ToBoolean(Result(2)) is not true, go to step 13.
10. Evaluate Block.
11. Let C = Result(11).
12. Remove Result(2) from the front of the scope chain.
13. Return C.

The production CatchGuard : if Expression is evaluated as follows:

1. Evaluate Expression.
2. Return Result(1).

The production Finally : finally Block is evaluated as follows:
1. Evaluate Finally.
2. Return Result(1).

13 Function Definition

Syntax

FunctionDeclaration :
function Identifier ( FormalParameterListopt ) Block

FormalParameterList :
Identifier
FormalParameterList , Identifier

Semantics

Defines a property whose name is the Identifier and whose value is a function object with the given parameter list
and statements. If the FunctionDeclaration is supplied text to the eval function, then the declared function is
added to the activation object of the calling context if that object exists, else it is addedto the global object. If the
FunctionDeclaration is a Statement of an enclosing function, then the property referring to the function is added to
the enclosing function.

The [[Parent]] property of the function object is initialized to refer to the object to which the new property is added.

The production FunctionDeclaration: function Identifier ( ) Block is processed for function declarations as
follows:

1. Create a new Function object (15.3.2.1) with no parameters,the Block as the body, and Identifier as its name.
2. Put this new Function object as the new value of the property named Identifier in the global object or the

activation object, as appropriate (see above).

The production FunctionDeclaration: function Identifier ( FormalParameterList ) Block is processed for
function declarations as follows:

1. Create a new Function object (15.3.2.1) with the parameters specified by the FormalParameterList,the Block as
the body, and Identifier as its name.
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2. Put this new Function object  as the new value of the property named Identifier in the global object or the
activation object, as appropriate (see above).

For a FunctionDeclaration which is a Statement of an enclosing function, the Function object and the property which
refers to it are created when the enclosing Function object is created. When the FunctionDeclaration is evaluated, a
property is created in the activation object or With object for the nearest enclosing FunctionDeclaration or
WithStatement. The property name is the name of the function and its value is a newly created Closure object. If a
property with this name already exists in the activation object or With object, its value is replaced. The value of the
Closure object’s [[Prototype]] property is the Function object, and the value of its [[Parent]] property is the activation
object or With object, i.e. the top of the current scope chain (10.1.4).

[TBD – should this be specified just in terms of the top of the current scope chain?  How is the property added to the
With object to be made visible?  Adding the property to the object in the with statement – i.e. the prototype of the
With object – would be somewhat surprising.]

14 Program

Syntax

Program :
SourceElements

SourceElements :
SourceElement
SourceElements SourceElement

SourceElement :
Statement
FunctionDeclaration

The production Program : SourceElements is evaluated as follows:

1. Process SourceElements for function declarations.
2. Evaluate SourceElements.
3. Return Result(2).

The production SourceElements: SourceElement is processed for function declarations as follows:

1. Process SourceElement for function declarations.

The production SourceElements: SourceElement is evaluated as follows:

1. Evaluate SourceElement.
2. Return Result(1).

The production SourceElements: SourceElements SourceElement is processed for function declarations as follows:

1. Process SourceElements for function declarations.
2. Process SourceElement for function declarations.

The production SourceElements: SourceElements SourceElement is evaluated as follows:

1. Evaluate SourceElements.
2. If Result(1) is an abrupt completion, return Result(1)
3. Evaluate SourceElement.
4. If Result(3).value = empty, let Result(3).value = Result(1).value.
5. Return Result(3).

The production SourceElement: Statement is processed for function declarations by taking no action.

The production SourceElement: Statement is evaluated as follows:

1. Evaluate Statement.
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2. Return Result(1).

The production SourceElement: FunctionDeclaration is processed for function declarations as follows:

1. Process FunctionDeclaration for function declarations.

The production SourceElement: FunctionDeclaration is evaluated as follows:

1. Return (normal, empty, empty).

15 Native ECMAScript objects
There are certain built-in objects available whenever an ECMAScript program begins execution. One, the global
object, is in the scope chain of the executing program. Others are accessible as initial properties of the global object.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are constructors:
they are functions intended for use with the new operator. For each built-in function, this specification describes the
arguments required by that function and properties of the function object. For each built-in constructor, this
specification furthermore describes properties of the prototype object of that constructor and properties of specific
object instances returned by a new expression that invokes that constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described in this
section is given fewer arguments than the function is specified to require, the function or constructor shall behave
exactly as if it had been given sufficient additional arguments, each such argument being the undefined value.

None of the built-in functions described in this section shall initially have an arguments property, nor is one ever
automatically added during execution in the manner described for script functions in section 10.1.7.

Every built-in function and every built-in constructor has the Function prototype object, which is the value of the
expression Function.prototype (15.3.3.1), as the value of its internal [[Prototype]] property, except the
Function prototype object itself.

Every built-in prototype object has the Object prototype object, which is the value of the expression
Object.prototype (15.2.3.1), as the value of its internal [[Prototype]] property, except the Object prototype
object itself. Every native prototype object associated with a program-created function also has the Object prototype
object  as the value of its internal [[Prototype]] property.

None of the built-in functions described in this section shall implement the internal [[Construct]] method unless
otherwise specified in the description of a particular function. None of the built-in functions described in this section
shall initially have a prototype property unless otherwise specified in the description of a particular function.
Every built-in function object described in this section—whether as a constructor, an ordinary function, or both—has
a length property whose value is an integer. Unless otherwise specified, this value is equal to the number of named
arguments shown in the section heading for the function description; for example, the function object that is the
initial value of the indexOf property of the String prototype object is described under the section heading
“indexOf(searchString, position)” which shows the two named arguments searchString and position; therefore the
value of the length property of that function object is 2. Sometimes the same function object is described under
more than one heading to emphasize its different behaviors when given different numbers of actual arguments; in
such a case, unless otherwise specified, the length value is the largest number of arguments shown in any
applicable section heading. For example, the function object that is the initial value of the Object property of the
global object is described under four separate headings: as a function of one argument (section 15.2.1.1), as a
function of zero arguments (section 15.2.1.2), as a constructor  of one argument (15.2.2.1), and as a constructor of
zero arguments (15.2.2.2). The largest number of arguments described is 1, so the value of the length property of
that function object is 1.

In every case, a length property of a built-in function object described in this section has the attributes { ReadOnly,
DontDelete, DontEnum } (and no others). Every other property described in this section has the attribute
{ DontEnum } (and no others) unless otherwise specified.
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15.1 The Global Object
The global object does not have a [[Construct]] property; it is not possible to use the global object as a constructor
with the new operator.

The global object does not have a [[Call]] property; it is not possible to invoke the global object  as a function.

The value of the [[Prototype]] property of the global object is implementation-dependent.

15.1.1 Value properties of the Global Object

15.1.1.1 NaN

The initial value of NaN is NaN.

15.1.1.2 Infinity

The initial value of Infinity is +∞∞.

15.1.2 Function properties of the Global Object

15.1.2.1 eval(x)

When the eval function is called with one argument x, the following steps are taken:

1. If x is not a string value, return x.
2. Parse x as an ECMAScript Program. If the parse fails, generate a runtime error.
3. Evaluate the program from step 2.
4. If Result(3).type = throw, return Result(3), behaving as if a runtime error has occurred, see section 5.2.
5. If Result(3).value is not empty, return Result(3).value.
6. Return undefined.

15.1.2.2 parseInt(string, radix)

The parseInt function produces an integer value dictated by intepretation of the contents of the string
argument according to the specified radix.

When the parseInt function is called, the following steps are taken:

1. Call ToString(string).
2. Compute a substring of Result(1) consisting of the leftmost character that is not a StrWhiteSpaceChar

and all characters to the right of that character. (In other words, remove leading whitespace.)
3. Let sign be 1.
4. If Result(2) is not empty and the first character of Result(2) is a minus sign -, let sign be −1.
5. If Result(2) is not empty and the first character of Result(2) is a plus sign + or a minus sign -, then

Result(5) is the substring of Result(2) produced by removing the first character; otherwise, Result(5) is
Result(2).

6. If the radix argument is not supplied, go to step 12.
7. Call ToInt32(radix).
8. If Result(7) is zero, go to step 12; otherwise, if Result(7) < 2 or Result(7) > 36, return NaN.
9. Let R be Result(7).
10. If R = 16 and the length of Result(5) is at least 2 and the first two characters of Result(5) are either “0x”

or “0X”, let S be the substring of Result(5) consisting of all but the first two characters; otherwise, let S
be Result(5).

11. Go to step 22.
12. If Result(5) is empty or the first character of Result(5) is not 0, go to step 20.
13. If the length of Result(5) is at least 2 and the second character of Result(5) is x or X, go to step 17.
14. Let R be 8.
15. Let S be Result(5).
16. Go to step 22.
17. Let R be 16.
18. Let S be the substring of Result(5) consisting of all but the first two characters.
19. Go to step 22.
20. Let R be 10.



ECMAScript  Language Specificat ion with Netscape Proposals  22-Apr-98

71

21. Let S be Result(5).
22. If S contains any character that is not a radix-R digit, then let Z be the substring of S consisting of all

characters to the left of the leftmost such character; otherwise, let Z be S.
23. If Z is empty, return NaN.
24. Compute the mathematical integer value that is represented by Z in radix-R notation. (But if R is 10 and

Z contains more than 20 significant digits, every digit after the 20th may be replaced by a 0 digit, at the
option of the implementation; and if R is not 2, 4, 8, 10, 16, or 32, then Result(24) may be an
implementation-dependent approximation to the mathematical integer value that is represented by Z in
radix-R notation.)

25. Compute the number value for Result(24).
26. Return sign ⋅ Result(25).

Note that parseInt may interpret only a leading portion of the string as an integer value; it ignores any
characters that cannot be interpreted as part of the notation of an integer, and no indication is given that any
such characters were ignored.

15.1.2.3 parseFloat(string)

The parseFloat function produces a number value dictated by intepretation of the contents of the string
argument as a decimal literal.

When the parseFloat function is called, the following steps are taken:

1. Call ToString(string).
2. Compute a substring of Result(1) consisting of the leftmost character that is not a StrWhiteSpaceChar

and all characters to the right of that character.(In other words, remove leading whitespace.)
3. If neither Result(2) nor any prefix of Result(2) satisfies the syntax of a StrDecimalLiteral (see 9.3.1),

return NaN.
4. Compute the longest prefix of Result(2), which might be Result(2) itself, that satisfies the syntax of a

StrDecimalLiteral.
5. Return the number value for the MV of Result(4).

Note that parseFloat may interpret only a leading portion of the string as a number value; it ignores any
characters that cannot be interpreted as part of the notation of an decimal literal, and no indication is given
that any such characters were ignored.

15.1.2.4 escape(string)

The escape function computes a new version of a string value in which certain characters have been
replaced by a hexadecimal escape sequence. The result thus contains no special characters that might have
special meaning within a URL.

For characters whose Unicode encoding is 0xFF or less, a two-digit escape sequence of the form %xx is
used in accordance with RFC1738. For characters whose Unicode encoding is greater than 0xFF, a four-
digit escape sequence of the form %uxxxx is used

When the escape function is called with one argument string, the following steps are taken:

1. Call ToString(string).
2. Compute the number of characters in Result(1).
3. Let R be the empty string.
4. Let k be 0.
5. If k equals Result(2), return R.
6. Get the character at position k within Result(1).
7. If Result(6) is one of the 69 nonblank ASCII characters ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz 0123456789 @*_+-./, go to step 14.
8. Compute the 16-bit unsigned integer that is the Unicode character encoding of Result(6).
9. If Result(8), is less than 256, go to step 12.
10. Let S be a string containing six characters “%uwxyz” where wxyz are four hexadecimal digits encoding

the value of Result(8).
11. Go to step 15.
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12. Let S be a string containing three characters “%xy” where xy are two hexadecimal digits encoding the
value of Result(8).

13. Go to step 15.
14. Let S be a string containing the single character Result(6).
15. Let R be a new string value computed by concatenating the previous value of R and S.
16. Increase k by 1.
17. Go to step 5.

15.1.2.5 unescape(string)

The unescape function computes a new version of a string value in which each escape sequences of the
sort that might be introduced by the escape function is replaced with the character that it represents.

When the unescape function is called with one argument string, the following steps are taken:

1. Call ToString(string).
2. Compute the number of characters in Result(1).
3. Let R be the empty string.
4. Let k be 0.
5. If k equals Result(2), return R.
6. Let c be the character at position k within Result(1).
7. If c is not %, go to step 18.
8. If k is greater than Result(2)−6, go to step 14.
9. If the character at position k+1 within result(1) is not u, go to step 14.
10. If the four characters at positions k+2, k+3, k+4, and k+5 within Result(1) are not all hexadecimal digits,

go to step 14.
11. Let c be the character whose Unicode encoding is the integer represented by the four hexadecimal digits

at positions k+2, k+3, k+4, and k+5 within Result(1).
12. Increase k by 5.
13. Go to step 18.
14. If k is greater than Result(2)−3, go to step 18.
15. If the two characters at positions k+1 and k+2 within Result(1) are not both hexadecimal digits, go to step

18.
16. Let c be the character whose Unicode encoding is the integer represented by two zeroes plus the two

hexadecimal digits at positions k+1 and k+2 within Result(1).
17. Increase k by 2.
18. Let R be a new string value computed by concatenating the previous value of R and c.
19. Increase k by 1.
20. Go to step 5.

15.1.2.6 isNaN(number)

Applies ToNumber to its argument, then returns true if the result is NaN, and otherwise returns false.

15.1.2.7 isFinite(number)

Applies ToNumber to its argument, then returns false if the result is NaN, +∞∞, or −−∞∞, and otherwise returns
true.

15.1.3 Constructor Properties of the Global Object

15.1.3.1 Object( . . . )

See sections 15.2.1 and 15.2.2.

15.1.3.2 Function( . . . )

See sections 15.3.1 and 15.3.2.

15.1.3.3 Array( . . . )

See section 15.7.1 and 15.7.2.
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15.1.3.4 String( . . . )

See sections 15.8.1 and 15.8.2.

15.1.3.5 Boolean( . . . )

See sections 15.10.1 and 15.10.2.

15.1.3.6 Number( . . . )

See sections 15.11.1 and 15.11.2.

15.1.3.7 Date( . . . )

See section 15.13.2 and 15.13.3.

15.1.4 Other Properties of the Global Object

15.1.4.1 Math

See section 15.12.

15.1.4.2 RegExp

See section 15.9.7.

15.2 Object Objects

15.2.1 The Object Constructor Called as a Function

When Object is called as a function rather than as a constructor, it performs a type conversion.

15.2.1.1 Object(value)

When the Object function is called with one argument value, the following steps are taken:

1. If the value is null or undefined, create and return a newobject with no properties (other than internal
properties) exactly as if the object constructor had been called on that same value (15.2.2.1).

2. Return ToObject(value).

15.2.1.2 Object()

When the Object function is called with no arguments, the following step is taken:

1. Create and return a newobject with no properties (other than internal properties) exactly if the object
constructor had been called with no argument (15.2.2.2).

15.2.2 The Object Constructor

When Object is called as part of a new expression, it is a constructor that may create an object.

15.2.2.1 new Object(value)

When the Object constructor is called with one argument value, the following steps are taken:

1. If the type of the value is not Object, go to step 4.
2. If the value is a native ECMAScript object, do not create a new object; simply return value.
3. If the value is a host object, then actions are taken and a result is returned in an implementation-

dependent manner that  may depend on the host object.
4. If the type of the value is String, return ToObject(value).
5. If the type of the value is Boolean, return ToObject(value).
6. If the type of the value is Number, return ToObject(value).
7.  (The type of the value must be Null or Undefined.) Create a new native ECMAScript object.

The [[Prototype]] property of the newly constructed object is set to the Object prototype object.
The [[Class]] property of the newly constructed object is set to “Object”.
The newly constructed object has no [[Value]] property.
Return the newly created native object.

15.2.2.2 new Object()

When the Object constructor is called with no argument, the following step is taken:
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1. Create a new native ECMAScript object.
The [[Prototype]] property of the newly constructed object is set to the Object prototype object.
The [[Class]] property of the newly constructed object is set to “Object”.
The newly constructed object  has no [[Value]] property.
Return the newly created native object.

15.2.3 Properties of the Object Constructor

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties and the length property, the Object constructor has
the following properties:

15.2.3.1 Object.prototype

The initial value of Object.prototype is the built-in Object prototype object (15.2.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.2.4 Properties of the Object Prototype Object

The value of the internal [[Prototype]] property of the Object prototype object is null.

15.2.4.1 Object.prototype.constructor

The initial value of Object.prototype.constructor is the built-in Object constructor.

15.2.4.2 Object.prototype.toString()

When the toString method is called, the following steps are taken:

1. Get the [[Class]] property of this object.
2. Call ToString(Result(1)).
3. Compute a string value by concatenating  the three strings “[object “, Result(2), and “]”.
4. Return Result(3).

15.2.4.3 Object.prototype.toSource()

When the toSource method is called, the following steps are taken:

1. Let S be the string value consisting of “{” followed by implementation-dependent whitespace and/or line
terminator.

2. Let P be a Reference to the first property of the object that doesn’t have the DontEnum attribute. If there
is no such property, go to step 11.

3. Call GetPropertyName(P).
4. If the sequence of characters in Result(3) have the lexical form of an Identifier, use Result(3). Otherwise,

construct a string from Result(3) that contains an implementation-dependent sequence of characters in
the lexical form of a StringLiteral or NumericLiteral such that ToString(eval(Result(4))) would be equal
to Result(3).

5. Call GetValue(P).
6. If Result(5) is of type String, construct a new string from Result(5) that contains an implementation-

dependent sequence of characters in the lexical form of a StringLiteral such that eval(Result(6)) would be
equal to Result(5); else call ToString(Result(5)).

7. Replace the value of S by the concatenation of S, Result(4), implementation-dependent whitespace and/or
line terminator, “:” , implementation-dependent whitespace and/or line terminator, Result(6) and
implementation-dependent whitespace and/or line terminator.

8. Let P be a Reference to the next property of the object that doesn’t have the DontEnum attribute. If there
is no such property, go to step 11.

9. Replace the value of S by the concatenation of S, the character “,” and implementation-dependent
whitespace and/or line terminator.

10. Go to step 3.
11. Replace the value of S by the concatenation of S and the character “}”.
12. Return the string value S.
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The mechanics of enumerating the properties (steps 2 and 8) is implementation-dependent. The order of
enumeration is defined by the object.   Properties of the object being enumerated may be deleted  during
enumeration. If a property that has not yet been visited during enumeration is deleted, then it will not be
visited. If new properties are added to the object being enumerated during enumeration, the newly added
properties are not guaranteed to be visited in the active enumeration.

Unlike the evaluation of a for..in statement, the evaluation of a call to toString does not enumerate
the properties of an object’s prototype.  [TBD – is this correct?]

15.2.4.4 Object.prototype.valueOf()

As a rule, the valueOf method for an object simply returns the object; but if the object is a “wrapper” for a
host object, as may perhaps be created by the Object constructor (see section 15.2.2.1), then the contained
host object should be returned.

15.2.5 Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.

15.3 Function Objects

15.3.1 The Function Constructor Called as a Function

When Function is called as a function rather than as a constructor, it creates and initializes a new function
object. Thus the function call Function(...) is equivalent to the object creation expression new
Function(...) with the same arguments.

15.3.1.1 Function(p1, p2, . . . , pn, body)

When the Function function is called with some arguments p1, p2, . . . , pn, body (where n might be 0,
that is, there are no “p” arguments, and where body might also not be provided), the following steps are
taken:

1. Create and return a new Function object exactly if the function constructor had been called with the same
arguments (15.3.2.1).

15.3.2 The Function Constructor

When Function is called as part of a new expression, it is a constructor: it initializes the newly created
object.

15.3.2.1 new Function(p1, p2, . . . , pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify
formal parameters.

When the Function constructor is called with some arguments p1, p2, . . . , pn, body (where n might be 0,
that is, there are no “p” arguments, and where body might also not be provided), the following steps are
taken:

1. Let P be the empty string.
2. If no arguments were given, let body be the empty string and go to step 13.
3. If one argument was given, let body be that argument and go to step 13.
4. Let Result(4) be the first argument.
5. Let P be ToString(Result(4)).
6. Let k be 2.
7. If k equals the number of arguments, let body be the k’th argument and go to step 13.
8. Let Result(8) be the k’th argument.
9. Call ToString(Result(8)).
10. Let P be the result of concatenating the previous value of P, the string “,” (a comma), and Result(9).
11. Increase k by 1.
12. Go to step 7.
13. Call ToString(body).
14. Let F be the newly constructed Function object.
15. The [[Class]] property of F is set to “Function”.
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16. The [[Prototype]] property of F is set to the original Function prototype object, the one that is the initial
value of Function.prototype (15.3.3.1).

17. Set the [[Call]] property of F to a method such that, when it is invoked, the executable function will be
invoked whose formal parameters are specified by P and whose body is specified by Result(13). The
string value P must be parsable as a FormalParameterListopt; the string value result(13) must be parsable
as a StatementListopt. (Note that both P and Result(13) may contain whitespace, line terminators, and
comments.) However, if either P or Result(13) is syntactically incorrect, or otherwise cannot be
interpreted as part of a correct ECMAScript function definition, then the [[Call]] property of F is not set
and a runtime error is generated..

18. Set the [[Construct]] property of F to a method that, when it is invoked, constructs a new object whose
[[Prototype]] property is equal to the value of F.prototype at the time the [[Construct]] method is
invoked (but if this value is not an object then the value of Object.prototype is used) and whose
[[Parent]] property is equal to the value of the [[Parent]] property of F at the time the [[Construct]]
method is invoked, then invokes F as a function (using its [[Call]] property) with the new object as the
this value and the arguments given to the [[Construct]] method as the arguments. If the result of
invoking the [[Call]]  method is an object, that object becomes the result of the invocation of the
[[Construct]] method; otherwise the new object becomes the result of the invocation of the [[Construct]]
method.

19. If the toString method of F is later invoked, it will use “anonymous” as the name of the function in
rendering the function as a string.

20. Compute, as an integer number value of positive sign, the number of formal parameters that resulted
from the parse of P as a FormalParameterListopt.

21. The length property of F is set to Result(20). This property is given attributes { DontDelete,
DontEnum, ReadOnly }.

22. Create a new object as if by the expression new Object().
23. The prototype property of F is set to Result(22). This property is given attributes { DontEnum }.
24. The constructor property of Result(22) is set to F. This property is given attributes { DontEnum }.
25. The arguments property of F is set to null. This property is given attributes { DontDelete, DontEnum,

ReadOnly }.
26. Return F.

Note that it is permissible but not necessary to have one argument for each formal parameter to be specified.
For example, all three of the following expressions produce the same result:

new Function(“a”, “b”, “c”, “return a+b+c”)

new Function(“a, b, c”, “return a+b+c”)

new Function(“a,b”, “c”, “return a+b+c”)

A prototype property is automatically created for every function, against the possibility that the function
will be used as a constructor.

15.3.3 Properties of the Function Constructor

15.3.3.1 Function.prototype

The initial value of Function.prototype is the built-in Function prototype object (15.3.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.3.3.2 Function.length

The length property is 1. (Of course, the Function constructor accepts more than one argument, because it
accepts a variable number of arguments.)

15.3.4 Properties of the Function Prototype Object

The Function prototype object is itself a Function object (its [[Class]] is “Function”) that, when invoked,
accepts any arguments and returns undefined.

The value of the internal [[Prototype]] property of the Function prototype object is the Object prototype object
(15.2.3.1).
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It is a function with an “empty body”; if it is invoked, it merely returns undefined.

The Function prototype object does not have a valueOf property of its own; however, it inherits the
valueOf property from the Object prototype object.

15.3.4.1 Function.prototype.constructor

The initial value of Function.prototype.constructor is the built-in Function constructor.

15.3.4.2 Function.prototype.toString()

An implementation-dependent representation of the function is returned. This representation has the syntax
of a FunctionDeclaration. Note in particular that the use and placement of whitespace, line terminators, and
semicolons within the representation string is implementation-dependent.

The toString function is not generic; it generates a runtime error if its this value is not a Function
object. Therefore it cannot be transferred to other kinds of objects for use as a method.

15.3.4.3 Function.prototype.apply(thisArg, argArray)

When the apply method is called with two arguments thisArg and argArray, it performs a function call
using the [[Call]] property of the object.  If the object does not have a [[Call]] property, a runtime error is
generated.  The called function is passed ToObject(thisArg) as the this value and the elements of argArray as
the arguments.

When argArray is not supplied, no arguments are passed.  When thisArg is not supplied, the [[Parent]]
property of the object is used in its place.

When argArray is supplied, the function is passed the (ToUint32(argArray.length)) arguments argArray[0],
argArray[1], …, argArray[ToUint32(argArray.length)-1].

The apply method effectively exits from its execution context as part of performing the call, so that the
execution context (including the scope chain) of the callee is the same as if that function had been called
instead of apply.

15.3.4.4 Function.prototype.call(thisArg, arg1, arg2, …)

When the call method is called with one or more arguments thisArg and (optionally) arg1, arg2 etc, it
performs a function call using the [[Call]] property of the object.  If the object does not have a [[Call]]
property, a runtime error is generated.  The called function is passed ToObject(thisArg) as the this value and
arg1, arg2 etc. as the arguments.

When arg1, arg2 etc. are not supplied, no arguments are passed.  When thisArg is not supplied, the
[[Parent]] property of the object is used in its place.

The call method effectively exits from its execution context as part of performing the call, so that the
execution context (including the scope chain) of the callee is the same as if that function had been called
instead of call.

15.3.5 Properties of Function Instances

Every function instance has a [[Call]] property and a [[Construct]] property.

15.3.5.1 arguments

The value of the arguments property is normally null if there is no outstanding invocation of the function
in progress (that is, the function has been called but has not yet returned). When a non-internal Function
object (15.3.2.1) is invoked, its arguments property is “dynamically bound” to a newly created object that
contains the arguments on which it was invoked (see 10.1.7). This property shall have the attributes
{ DontDelete,  ReadOnly }. The use of this property is deprecated.

15.3.5.2 arity

The value of the arity property is an integer that indicates the “typical” number of arguments expected by
the function. However, the language permits the function to be invoked with some other number of
arguments. The behavior of a function when invoked on a number of arguments other than the number
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specified by its arity property depends on the function. This property shall have the attributes
{ DontDelete,  ReadOnly }.

15.3.5.3 length

The value of the length property is usually an integer that indicates the “typical” number of arguments
expected by the function. However, the language permits the function to be invoked with some other number
of arguments. The behavior of a function when invoked on a number of arguments other than the number
specified by its length property depends on the function. This property shall have the attributes
{ DontDelete,  ReadOnly }. The use of this property is deprecated.

15.3.5.4 prototype

The value of the prototype property is used to initialize the internal [[Prototype]] property of a newly
created object before the Function object is invoked as a constructor for that newly created object. This
property shall have the attributes { DontDelete, ReadOnly }.

15.4 Call Objects
Call objects are used as activation objects for function calls as described in section 10.1.7 . Calling the Call object
as a function generates a runtime error.

15.4.1 The Call Constructor

If Call is called as part of a new expression, it is a constructor: it initializes the newly created object.

15.4.1.1 new Call()

The [[Class]] property of the newly constructed object is set to “Call”.

The arguments property of the newly constructed object is set to the object itself. This provides a
mechanism for accessing the arguments of a function call by their ordinals.

The callee property is set to null.

The length property is set to 0.

The internal [[OldArguments]] property is set to null.

The function call mechanism sets the values of these properties as part of performing a function call.

15.4.2 Properties of the Call Constructor

The value of the internal [[Prototype]] property of the Call constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties, the Call constructor has the following properties:

15.4.2.1 Call.prototype

The initial value of Call.prototype is the built-in Call prototype object (15.4.3).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.4.2.2 Call.length

The length property is 0.

15.4.3 Properties of the Call Prototype Object

The value of the internal [[Prototype]] property of the Call prototype object is the Array prototype object
(15.7.3.1).

The Call prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the Object prototype object.

15.4.3.1 Call.prototype.constructor

The initial value of Call.prototype.constructor is the built-in Call constructor.

15.4.4 Properties of Call Instances

Call instances inherit properties from the Object prototype object and also have the following properties.
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15.4.4.1 callee

The callee property of a Call object is initially null. For Call objects created by the implementation as part
of the scope chain, the value of the callee property is set to the called function object. The callee property
has the attributes { DontDelete, DontEnum }.

15.4.4.2 arguments

The arguments property of a Call object refers to itself. For Call objects created by the implementation as
part of the scope chain, the Call object has contains properties for the actual arguments; the arguments
property provides a name through which the Call object, and thus the actual arguments, may be accessed.
The arguments property has the attributes { DontDelete, DontEnum }.

15.4.4.3 length

The length property of a Call object is initially 0. For Call objects created by the implementation as part of
the scope chain, the value of the length property is the number of actual arguments. The length property
has the attributes { DontDelete, DontEnum }.

15.4.4.4 [[OldArguments]]

The internal [[OldArguments]] property is initially null. For Call objects created by the implementation as
part of the scope chain, the value of the [[OldArguments]] is set to the value of callee.arguments
before callee.arguments is modified, or to null if callee.arguments was not defined.

15.5 With Objects

With objects are used in the scope chain to make the properties of the object specified in a WithStatement Error!
Reference source not found.visible to name lookup 10.1.4. Calling the With object as a function generates a
runtime error.

15.5.1 The With Constructor

When With is called as part of a new expression, it is a constructor: it initializes the newly created object.

15.5.1.1 new With(obj)

The [[Class]] property of the newly constructed object is set to “With”.

The [[Prototype]] property of the newly constructed object is set to obj.

15.5.1.2 new With()

The [[Class]] property of the newly constructed object is set to “With”.

The [[Prototype]] property of the newly constructed object is set to the Object.prototype object.

15.5.2 Properties of the With Constructor

The value of the internal [[Prototype]] property of the With constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties, the With constructor has the following properties.

15.5.2.1 With.prototype

The initial value of With.prototype is the built-in With prototype object (15.5.3).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }. Note that the [[Prototype]]
property of the constructed object is set from the constructor argument, not from With.prototype.

15.5.2.2 With.length

The length property is 1.

15.5.3 Properties of the With Prototype Object

The value of the internal [[Prototype]] property of the With prototype object is the Object prototype object
(15.2.3.1).

The With prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the Object prototype object.
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15.5.3.1 With.prototype.constructor

The initial value of With.prototype.constructor is the built-in With constructor.

15.5.4 Properties of With Instances

With instances inherit properties from their [[Prototype]] object as specified above and also have the following
properties.

15.5.4.1 [[Put]], [[CanPut]], [DefaultValue]]

With objects use variations of the [[Put]], [[CanPut]] and [DefaultValue]] methods used for other native
ECMAScript objects (section 8.6.2).

If O is a With object, P is a string other than __parent__, and hint is a string,

O.[[DefaultValue]](hint) is the same as O.[[Prototype]].[[DefaultValue]](hint)

If property P exists in O, [[Put]] and [[CanPut]] have the usual behavior, else:

O.[[Put]](P,V) is the same as O.[[Prototype]].[[Put]](P,V)

O.[[CanPut]](P) is the same as O.[[Prototype]].[[CanPut]](P)

If the string P is __parent__, the modified behavior does not apply so these methods behave as described
in section 8.6.2.  (Note: there is not yet consensus on the handling of __parent__ .)

15.6 Closure Objects
Closure objects provide a mechanism for creating and calling closures.

15.6.1 The Closure Constructor Called as a Function

When Closure is called as a function rather than as a constructor, it creates and initializes a new closure
object. Thus the function call Closure (...) is equivalent to the object creation expression new Closure
(...) with the same arguments.

15.6.1.1 Closure(function.)

A closure is created and returned as if by the expression new Closure (function).

15.6.1.2 Closure()

A closure is created and returned as if by the expression new Closure ().

15.6.2 The Closure Constructor

When Closure is called as part of a new expression, it is a constructor: it initializes the newly created object.

15.6.2.1 new Closure(function)

The [[Class]] property of the newly constructed object is set to “Closure”.

The [[Prototype]] property of the newly constructed object is set to function.

The [[Parent]] property of the newly constructed object is set to the first object in the caller’s scope chain.

15.6.2.2 new Closure()

The [[Class]] property of the newly constructed object is set to “Closure”.

The [[Prototype]] property of the newly constructed object is set to the Object.prototype object.

The [[Parent]] property of the newly constructed object is set to the first object in the caller’s scope chain.

15.6.3 Properties of the Closure Constructor

The value of the internal [[Prototype]] property of the Closure constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties, the Closure constructor has the following properties.
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15.6.3.1 Closure.prototype

The initial value of Closure.prototype is the built-in Closure prototype object. This property shall
have the attributes { DontEnum, DontDelete, ReadOnly }. Note that the [[Prototype]] property of the
constructed object is set from the function object, not from Closure.prototype.

15.6.3.2 Closure.length

The length property is 1.

15.6.4 Properties of the Closure Prototype Object

The value of the internal [[Prototype]] property of the Closure prototype object is the Object prototype object
(15.2.3.1).

The Closure prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the Object prototype object.

15.6.4.1 Closure.prototype.constructor

The initial value of Closure.prototype.constructor is the built-in Closure constructor.

15.7 Array Objects
Array objects give special treatment to a certain class of property names. A property name P (in the form of a
string value) is an array index if and only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal to
232−1. Every Array object has a length property whose value is always an integer with positive sign and less
than 232. It is always the case that the length property is numerically greater than the name of every property
whose name is an array index; whenever a property of an Array object is created or changed, other properties are
adjusted as necessary to maintain this invariant. Specifically, whenever a property is added or deleted whose name
is an array index, the length property is changed, if necessary, to be one more than the numeric value of the
largest remaining array index (or zero if none remain); and whenever the length property is changed, every
property whose name is an array index whose value is not smaller than the new length is automatically deleted.
This constraint applies only to properties of the Array object itself and is unaffected by length or array index
properties that may be inherited from its prototype.

15.7.1 The Array Constructor Called as a Function

When Array is called as a function rather than as a constructor, it creates and initializes a new array object.
Thus the function call Array (...) is equivalent to the object creation expression new Array (...) with
the same arguments.

15.7.1.1 Array(item0, item1, . . .)

An array is created and returned as if by the expression new Array (item0, item1, . . .).

15.7.1.2 Array(len)

An array is created and returned as if by the expression new Array (len).

15.7.1.3 Array()

An array is created and returned as if by the expression new Array ().

15.7.2 The Array Constructor

When Array is called as part of a new expression, it is a constructor: it initializes the newly created object.

15.7.2.1 new Array(item0, item1, . . .)

This description applies if and only if the Array constructor is given two or more arguments.

The [[Prototype]] property of the newly constructed object is set to the original Array prototype object, the
one that is the initial value of Array.prototype (15.7.3.1).

The [[Class]] property of the newly constructed object is set to “Array”.

The length property of the newly constructed object is set to the number of arguments.
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The 0 property of the newly constructed object is set to item0; the 1 property of the newly constructed object
is set to item1; and, in general, for as many arguments as there are, the k property of the newly constructed
object is set to argument k, where the first argument is considered to be argument number 0.

15.7.2.2 new Array(len)

The [[Prototype]] property of the newly constructed object is set to the original Array prototype object, the
one that is the initial value of Array.prototype (15.7.3.1). The [[Class]] property of the newly
constructed object is set to “Array”.

If the argument len is a number, then the length property of the newly constructed object is set to
ToUint32(len). If the argument len is not a number, then the length property of the newly constructed
object is set to 1 and the 0 property of the newly constructed object is set to len.

15.7.2.3 new Array()

The [[Prototype]] property of the newly constructed object is set to the original Array prototype object, the
one that is the initial value of Array.prototype (15.7.3.1). The [[Class]] property of the newly
constructed object is set to “Array”.

The length property of the newly constructed object is set to +0.

15.7.3 Properties of the Array Constructor

The value of the internal [[Prototype]] property of the Array constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties, the Array constructor has the following properties:

15.7.3.1 Array.prototype

The initial value of Array.prototype is the built-in Array prototype object (15.7.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.7.3.2 Array.length

The length property is 1. (Of course, the Array constructor accepts more than one argument, because it
accepts a variable number of arguments.)

15.7.4 Properties of the Array Prototype Object

The value of the internal [[Prototype]] property of the Array prototype object is the Object prototype object
(15.2.3.1).

Note that the Array prototype object is itself an array; it has a length property (whose initial value is +0) and
the special internal [[Put]] method described in section 15.7.5.1. In following descriptions of functions that are
properties of the Array prototype object, the phrase “this object” refers to the object that is the this value for
the invocation of the function. It is permitted for this to refer to an object for which the value of the internal
[[Class]] property is not “Array”.

The Array prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the Object prototype Object.

15.7.4.1 Array.prototype.constructor

The initial value of Array.prototype.constructor is the built-in Array constructor.

15.7.4.2 Array.prototype.toString()

The elements of this object are converted to strings, and these strings are then concatenated, separated by
comma characters. The result is the same as if the built-in join method were invoked for this object with
no argument.

15.7.4.3 Array.prototype.toSource()

When the toSource method is called, the following steps are taken:
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1. Let S be the string value consisting of “[” followed by implementation-dependent whitespace and/or line
terminator.

2. Let k be the numeric value zero.
3. Call the [[Get]] method of this object with argument “length”.
4. If k is greater than or equal to ToUint32(Result(3)), go to step 18.
5. Call ToString(k).
6. If the object has a non-inherited property with the name Result(5), go to step 10.
7. Replace the value of S by the concatenation of S, the character “,” and implementation-dependent

whitespace and/or line terminator .
8. Increase k by 1.
9. Go to step 3.
10. Call the [[Get]] method of this object with argument Result(5).
11. If Result(10) is of type String, construct a new string from Result(10) that contains an implementation-

dependent sequence of characters in the lexical form of a StringLiteral such that eval(Result(11)) would
be equal to Result(10); else call ToString(Result(10)).

12. Replace the value of S by the concatenation of S , Result(11) and implementation-dependent whitespace
and/or line terminator.

13. Increase k by 1.
14. Call the [[Get]] method of this object with argument “length”.
15. If k is greater than or equal to ToUint32(Result(14)), go to step 18.
16. Replace the value of S by the concatenation of S, the character “,” and implementation-dependent

whitespace and/or line terminator.
17. Go to step 5.
18. Replace the value of S by the concatenation of S and the character “]”.
19. Return the string value S.

15.7.4.4 Array.prototype.concat(array1, array2, …)

When the concat method is called with zero or more arguments array1, array2, etc., it returns an array
containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

1. Let A be a new array created as if by the expression new Array().
2. Call the [[Get]] method of this object with argument “length”.
3. Call ToUint32(Result(2)).
4. Let n be 0.
5. If n equals Result(3), go to step 12.
6. Call ToString(n).
7. If this object has a property named by Result(6), go to step 8; but if this object has no property named by

Result(6), then go to either step 8 or step 10, depending on the implementation.
8. Call the [[Get]] method of this object with argument Result(6).
9. Call the [[Put]] method of A with arguments Result(6) and Result(8).
10. Increase n by 1.
11. Go to step 5.
12. Get the next argument in the argument list; if there are no more arguments, go to step 26.
13. Call ToObject(Result(12)).
14. Call the [[Get]] method of Result(13) with argument “length”.
15. Call ToUint32(Result(14)).
16. Let k be 0.
17. If k equals Result(15), go to step 12.
18. Call ToString(k).
19. If Result(13) has a property named by Result(18), go to step 20; but if Result(13) has no property named

by Result(18), then go to either step 20 or step 23, depending on the implementation.
20. Call ToString(n).
21. Call the [[Get]] method of Result(13) with argument Result(18).
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22. Call the [[Put]] method of A with arguments Result(20) and Result(21).
23. Increase k by 1.
24. Increase n by 1.
25. Go to step 17.
26. Call the [[Put]] method of A with arguments “length” and n.
27. Return A.

Note that the concat function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the concat
function can be applied successfully to a host object is implementation-dependent .

15.7.4.5 Array.prototype.join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated by
occurrences of  the separator. If no separator is provided, a single comma is used as the separator.

When the join method is called with one argument separator, the following steps are taken:

1. Call the [[Get]] method of this object with argument “length”.
2. Call ToUint32(Result(1)).
3. If separator is not supplied, let separator be the single-character string “,”.
4. Call ToString(separator).
5. If Result(2) is zero, return the empty string.
6. Call the [[Get]] method of this object with argument “0”.
7. If Result(6) is undefined or null, use the empty string; otherwise, call ToString(Result(6)).
8. Let R be Result(7).
9. Let k be 1.
10. If k equals Result(2), return R.
11. Let S be a string value produced by concatenating R and Result(4).
12. Call the [[Get]] method of this object with argument ToString(k).
13. If Result(12) is undefined or null, use the empty string; otherwise, call ToString(Result(12)).
14. Let R be a string value produced by concatenating S and Result(13).
15. Increase k by 1.
16. Go to step 10.

Note that the join function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the join
function can be applied successfully to a host object is implementation-dependent.

15.7.4.6 Array.prototype.pop()

The last element of the array is removed from the array and returned.

1. Call the [[Get]] method of this object with argument “length”.
2. Call ToUint32(Result(1)).
3. If Result(2) is not zero, go to step 6.
4. Call the [[Put]] method of this object with arguments “length” and Result(2).
5. Return undefined.
6. Call ToString(Result(2)-1).
7. Call the [[Get]] method of this object with argument Result(6).
8. Call the [[Delete]] method of this object with argument Result(6).
9. Call the [[Put]] method of this object with arguments “length” and (Result(2)-1).
10. Return Result(7).

Note that the pop function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the pop
function can be applied successfully to a host object is implementation-dependent.
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15.7.4.7 Array.prototype.push(item1, item2, …)

The arguments are appended to the end of the array, in the order in which they appear. The new length of
the array is returned as the result of the call.

When the push method is called with zero or more arguments item1, item2, etc., the following steps are
taken:

1. Call the [[Get]] method of this object with argument “length”.
2. Let n be the result of calling ToUint32(Result(1)).
3. Get the next argument in the argument list; if there are no more arguments, go to step 7.
4. Call the [[Put]] method of this object with arguments ToString(n) and Result(3).
5. Increase n by 1.
6. Go to step 3.
7. Call the [[Put]] method of this object with arguments “length” and n.
8. Return n.

Note that the push function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the push
function can be applied successfully to a host object is implementation-dependent.

15.7.4.8 Array.prototype.reverse()

The elements of the array are rearranged so as to reverse their order. This object is returned as the result of
the call.

1. Call the [[Get]] method of this object with argument “length”.
2. Call ToUint32(Result(1)).
3. Compute floor(Result(2)/2).
4. Let k be 0.
5. If k equals Result(3), return this object.
6. Compute Result(2)−k−1.
7. Call ToString(k).
8. Call ToString(Result(6)).
9. Call the [[Get]] method of this object with argument Result(7).
10. Call the [[Get]] method of this object with argument Result(8).
11. If this object has a property named by Result(8), go to step 12; but if this object has no property named by

Result(8), then go to either step 12 or step 14, depending on the implementation.
12. Call the [[Put]] method of this object with arguments Result(7) and Result(10).
13. Go to step 15.
14. Call the [[Delete]] method on this object, providing Result(7) as the name of the property to delete.
15. If this object has a property named by Result(7), go to step 16; but if this object has no property named by

Result(7), then go to either step 16 or step 18, depending on the implementation.
16. Call the [[Put]] method of this object with arguments Result(8) and Result(9).
17. Go to step 19.
18. Call the [[Delete]] method on this object, providing Result(8) as the name of the property to delete.
19. Increase k by 1.
20. Go to step 5.

Note that the reverse function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the reverse
function can be applied successfully to a host object is implementation-dependent.

15.7.4.9 Array.prototype.shift()

The first element of the array is removed from the array and returned.

1. Call the [[Get]] method of this object with argument “length”.
2. Call ToUint32(Result(1)).
3. If Result(2) is not zero, go to step 6.
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4. Call the [[Put]] method of this object with arguments “length” and Result(2).
5. Return undefined.
6. Call the [[Get]] method of this object with argument “0”.
7. Let k be 1.
8. If k equals Result(2), go to step 18.
9. Call ToString(k).
10. Call ToString(k-1).
11. If this object has a property named by Result(9), go to step 12; but if this object has no property named by

Result(9), then go to either step 12 or step 15, depending on the implementation.
12. Call the [[Get]] method of this object with argument Result(9).
13. Call the [[Put]] method of this object with arguments Result(10) and Result(12).
14. Go to step 16.
15. Call the [[Delete]] method of this object with argument Result(10).
16. Increase k by 1.
17. Go to step 8.
18. Call the [[Delete]] method of this object with argument ToString(Result(2)-1).
19. Call the [[Put]] method of this object with arguments “length” and (Result(2)-1).
20. Return Result(6).

Note that the shift function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the shift
function can be applied successfully to a host object is implementation-dependent.

15.7.4.10 Array.prototype.slice(start,end)

When the slice method is called with one or two argument start and (optionally) end, it returns an array
containing the elements of the array from element start up to, but not including, element end (or through the
end of the array if end is not supplied). If start is negative, it is treated as (length+start) where length is the
length of the array. If end is supplied and negative, it is treated as (length+end) where length is the length of
the array. The following steps are taken:

1. Let A be a new array created as if by the expression new Array().
2. Call the [[Get]] method of this object with argument “length”.
3. Call ToUint32(Result(2)).
4. Let k be ToUint32(start).
5. If end is undefined or not supplied, use Result(3); else use ToInt32(end).
6. If Result(5) is negative, use max((Result(3)+Result(5)),0); else use min(Result(5),Result(3)).
7. Let n be 0.
8. If k is greater than or equal to Result(6), go to step 17.
9. Call ToString(k).
10. If this object has a property named by Result(9), go to step 11; but if this object has no property named by

Result(9), then go to either step 11 or step 14, depending on the implementation.
11. Call ToString(n).
12. Call the [[Get]] method of this object with argument Result(9).
13. Call the [[Put]] method of A with arguments Result(11) and Result(12).
14. Increase k by 1.
15. Increase n by 1.
16. Go to step 8.
17. Call the [[Put]] method of A with arguments “length” and n.
18. Return A.

Note that the slice function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the slice
function can be applied successfully to a host object is implementation-dependent.
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15.7.4.11 Array.prototype.sort(comparefn)

The elements of this array are sorted. The sort is not necessarily stable. If comparefn is provided, it should be
a function that accepts two arguments x and y and returns a negative value if x < y, zero if x = y, or a
positive value if x > y.

1. Call the [[Get]] method of this object with argument “length”.
2. Call ToUint32(Result(1)).
3. Perform an implementation-dependent sequence of calls to the [[Get]] , [[Put]], and [[Delete]] methods of

this object and to SortCompare (described below), where the first argument for each call to [[Get]],
[[Put]], or [[Delete]]  is a nonnegative integer less than Result(2) and where the arguments for calls to
SortCompare are results of previous calls to the [[Get]] method. After this sequence is complete, this
object must have the following two properties.
(1) There must be some mathematical permutation ππ of the nonnegative integers less than Result(2), such
that for every nonnegative integer j less than Result(2), if property old[j] existed, then new[ππ(j)] is
exactly the same value as old[j],. but if property old[j] did not exist, then new[ππ(j)] either does
not exist or exists with value undefined.
(2) If comparefn is not supplied or is a consistent comparison function for the elements of this array, then
for all nonnegative integers j and k, each less than Result(2), if old[j] compares less than old[k]
(see SortCompare below), then ππ(j) < ππ(k).
Here the notation old[j] is used to refer to the hypothetical result of calling the [[Get]] method of this
object with argument j before this step is executed, and the notation new[j] to refer to the hypothetical
result of calling the [[Get]] method of this object with argument j after this step has been completely
executed.
A function is a consistent comparison function for a set of values if (a) for any two of those values
(possibly the same value) considered as an ordered pair, it always returns the same value when given that
pair of values as its two arguments, and the result of applying ToNumber to this value is not NaN; (b)
when considered as a relation, where the pair (x, y) is considered to be in the relation if and only if
applying the function to x and y and then applying ToNumber to the result produces a negative value,
this relation is a partial order; and (c) when considered as a different relation, where the pair (x, y) is
considered to be in the relation if and only if applying the function to x and y and then applying
ToNumber to the result produces a zero value (of either sign), this relation is an equivalence relation. In
this context, the phrase “x compares less than y” means applying Result(2) to x and y and then applying
ToNumber to the result produces a negative value.

4. Return this object.

When the SortCompare operator is called with two arguments x and y, the following steps are taken:

1. If x and y are both undefined, return +0.
2. If x is undefined, return 1.
3. If y is undefined, return −1.
4. If the argument comparefn was not provided in the call to sort, go to step 7.
5. Call comparefn with arguments x and y.
6. Return Result(5).
7. Call ToString(x).
8. Call ToString(y).
9. If Result(7) < Result(8), return −1.
10. If Result(7) > Result(8), return 1.
11. Return +0.

Note that, because undefined always compares greater than any other value, undefined and nonexistent
property values always sort to the end of the result. It is implementation-dependent whether or not such
properties will exist or not at the end of the array when the sort is concluded.

Note that the sort function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the sort
function can be applied successfully to a host object is implementation-dependent .
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15.7.4.12 Array.prototype.splice(start, deleteCount, item1, item2, …)

When the splice method is called with two or more arguments start, deleteCount and (optionally) item1,
item2, etc., the deleteCount elements of the array starting at array index start are replaced by the arguments
item1, item2, etc. The following steps are taken:

1. Let A be a new array created as if by the expression new Array().
2. Call the [[Get]] method of this object with argument “length”.
3. Call ToUint32(Result(2)).
4. Compute min(Uint32(start),Result(3)).
5. Compute min(Uint32(deleteCount),Result(3)-Result(4)).
6. Let k be 0. *** copy ***
7. If k equals Result(5), go to step 15.
8. Call ToString(Result(4)+k).
9. If this object has a property named by Result(8), go to step 10; but if this object has no property named by

Result(8), then go to either step 10 or step 13, depending on the implementation.
10. Call ToString(k).
11. Call the [[Get]] method of this object with argument Result(8).
12. Call the [[Put]] method of A with arguments Result(10) and Result(11).
13. Increment k by 1.
14. Go to step 7.
15. Call the [[Put]] method of A with arguments “length” and Result(5).
16. Compute the number of additional arguments item1, item2, etc.
17. If Result(16) is equal to Result(5), go to step 47.
18. If Result(16) is greater than Result(5), go to step 36.
19. Let k be Result(4). *** move down ***
20. If k is equal to (Result(3)-Result(5)), go to step 30.
21. Call ToString(k+Result(5)).
22. Call ToString(k+Result(16)).
23. If this object has a property named by Result(21), go to step 24; but if this object has no property named

by Result(21), then go to either step 24 or step 27, depending on the implementation.
24. Call the [[Get]] method of this object with argument Result(21)..
25. Call the [[Put]] method of this object with arguments Result(22) and Result(24).
26. Go to step 28.
27. Call the [[Delete]] method of this object with argument Result(22).
28. Increase k by 1.
29. Go to step 20.
30. Let k be Result(3).
31. If k is equal to (Result(3)-Result(5)+Result(16)), go to step 47.
32. Call ToString(k-1).
33. Call the [[Delete]] method of this object with argument Result(32).
34. Decrease k by 1.
35. Go to step 31.
36. Let k be (Result(3)-Result(5)). *** move up ***
37. If k is equal to Result(4), go to step 47.
38. Call ToString(k+Result(5)-1).
39. Call ToString(k+Result(16)-1)
40. If this object has a property named by Result(38), go to step 41; but if this object has no property named

by Result(38), then go to either step 41 or step 44, depending on the implementation.
41. Call the [[Get]] method of this object with argument Result(38).
42. Call the [[Put]] method of this object with arguments Result(39) and Result(41).
43. Go to step 45.
44. Call the [[Delete]] method of this object with argument Result(39).
45. Decrease k by 1.
46. Go to step 37.
47. Let k be Result(4). *** copy args ***
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48. Get the next argument in the part of the argument list which starts with item1; if there are no more
arguments, go to step 52.

49. Call the [[Put]] method of this object with arguments ToString(k) and Result(48).
50. Increase k by 1.
51. Go to step 48.
52. Call the [[Put]] method of this object with arguments “length” and (Result(3)-Result(5)+Result(16)).
53. Return A.

Note that the splice function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the splice
function can be applied successfully to a host object is implementation-dependent.

15.7.4.13 Array.prototype.unshift(item1, item2, …)

The arguments are prepended to the start of the array, such that their order within the array is the same as
the order in which they appear in the argument list.

When the unshift method is called with zero or more arguments item1, item2, etc., the following steps are
taken:

1. Call the [[Get]] method of this object with argument “length”.
2. Call ToUint32(Result(1)).
3. Compute the number of arguments.
4. Let k be Result(2).
5. If k is zero, go to step 15.
6. Call ToString(k-1).
7. Call ToString(k+Result(3)-1).
8. If this object has a property named by Result(6), go to step 9; but if this object has no property named by

Result(6), then go to either step 9 or step 12, depending on the implementation.
9. Call the [[Get]] method of this object with argument Result(6).
10. Call the [[Put]] method of this object with arguments Result(7) and Result(9).
11. Go to step 13.
12. Call the [[Delete]] method of this object with argument Result(7).
13. Decrease k by 1.
14. Go to step 5.
15. Let k be 0.
16. Get the next argument in the part of the argument list which starts with item1; if there are no more

arguments, go to step 21.
17. Call ToString(k).
18. Call the [[Put]] method of this object with arguments Result(17) and Result(16).
19. Increase k by 1.
20. Go to step 16.
21. Call the [[Put]] method of this object with arguments “length” and (Result(2)+Result(3)).
22. Return (Result(2)+Result(3)).

Note that the unshift function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the unshift
function can be applied successfully to a host object is implementation-dependent.

15.7.5 Properties of Array Instances

Array instances inherit properties from the Array prototype object and also have the following properties.

15.7.5.1 [[Put]](P, V)

Array objects use a variation of the [[Put]] method used for other native ECMAScript objects (section
8.6.2.2).

Assume A is an Array object and P is a string.

When the [[Put]] method of A is called with property P and value V, the following steps are taken:
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1. Call the [[CanPut]] method of A with name P.
2. If Result(1) is false, return.
3. If A doesn’t have a property with name P, go to step 7.
4. If P is “length”, go to step 12.
5. Set the value of property P of A to V.
6. Go to step 8.
7. Create a property with name P, set its value to V and give it empty attributes.
8. If P is not an array index, return.
9. If A itself has a property (not an inherited property) named “length”, andToUint32(P) is less than the

value of the length property of A, then return.
10. Change (or set) the value of the length property of A to ToUint32(P)+1.
11. Return.
12. Compute ToUint32(V).
13. For every integer k that is less than the value of the length property of A but not less than Result(12), if

A itself has a property (not an inherited property) named ToString(k), then delete that property.
14. Set the value of property P of A to Result(12).
15. Return.

15.7.5.2 length

The length property of this Array object is always numerically greater than the name of every property
whose name is an array index.

The length property has the attributes { DontEnum, DontDelete }.

15.8 String Objects

15.8.1 The String Constructor Called as a Function

When String is called as a function rather than as a constructor, it performs a type conversion.

15.8.1.1 String(value)

Returns a string value (not a String object) computed by ToString(value).

15.8.1.2 String()

Returns the empty string “”.

15.8.2 The String Constructor

When String is called as part of a new expression, it is a constructor: it initializes the newly created object.

15.8.2.1 new String(value)

The [[Prototype]] property of the newly constructed object is set to the original String prototype object, the
one that is the initial value of String.prototype (15.8.3.1).

The [[Class]] property of the newly constructed object is set to “String”.

The [[Value]] property of the newly constructed object is set to ToString(value).

15.8.2.2 new String()

The [[Prototype]] property of the newly constructed object is set to the original String prototype object, the
one that is the initial value of String.prototype (15.8.3.1).

The [[Class]] property of the newly constructed object is set to “String”.

The [[Value]] property of the newly constructed object is set to the empty string.

15.8.3 Properties of the String Constructor

The value of the internal [[Prototype]] property of the String constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties and the length property, the String constructor has
the following properties:
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15.8.3.1 String.prototype

The initial value of String.prototype is the built-in String prototype object (15.8.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.8.3.2 String.fromCharCode(char0, char1, . . .)

Returns a string value containing as many characters as the number of arguments. Each argument specifies
one character of the resulting string, with the first argument specifying the first character, and so on, from
left to right. An argument is converted to a character by applying the operation ToUint16 (section 9.7) and
regarding the resulting 16-bit integer as the Unicode encoding of a character. If no arguments are supplied,
the result is the empty string.

15.8.4 Properties of the String Prototype Object

The String prototype object is itself a String object (its [[Class]] is “String”) whose value is an empty string.

The value of the internal [[Prototype]] property of the String prototype object is the Object prototype object
(15.2.3.1).

In following descriptions of functions that are properties of the String prototype object, the phrase “this String
object” refers to the object that is the this value for the invocation of the function; it is a runtime error if
this does not refer to an object for which the value of the internal [[Class]] property is “String”. Also, the
phrase “this string value” refers to the string value represented by this String object, that is, the value of the
internal [[Value]] property of this String object.

15.8.4.1 String.prototype.constructor

The initial value of String.prototype.constructor is the built-in String constructor.

15.8.4.2 String.prototype.toString()

Returns this string value. (Note that, for a String object, the toString method happens to return the same
thing as the valueOf method.)

The toString function is not generic; it generates a runtime error if its this value is not a String object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

15.8.4.3 String.prototype.valueOf()

Returns this string value.

The valueOf function is not generic; it generates a runtime error if its this value is not a String object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

15.8.4.4 String.prototype.charAt(pos)

Returns a string containing the character at position pos in this string. If there is no character at that
position, the result is the empty string. The result is a string value, not a String object.

If pos is a value of Number type that is an integer, then the result of x.charAt(pos) is equal to the result
of x.substring(pos, pos+1).

When the charAt method is called with one argument pos, the following steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Call ToInteger(pos).
3. Compute the number of characters in Result(1).
4. If Result(2) is less than 0 or is not less than Result(3), return the empty string.
5. Return a string of length 1, containing one character from Result(1), namely the character at position

Result(2), where the first (leftmost) character in Result(1) is considered to be at position 0, the next one
at position 1, and so on.

Note that the charAt function is intentionally generic; it does not require that its this value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.
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15.8.4.5 String.prototype.charCodeAt(pos)

Returns a number (a nonnegative integer less than 216) representing the Unicode encoding of the character at
position pos in this string. If there is no character at that position, the result is NaN.

When the charCodeAt method is called with one argument pos, the following steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Call ToInteger(pos).
3. Compute the number of characters in Result(1).
4. If Result(2) is less than 0 or is not less than Result(3), return NaN.
5. Return a value of Number type, of positive sign, whose magnitude is the Unicode encoding of one

character from Result(1), namely the character at position Result(2), where the first (leftmost) character
in Result(1) is considered to be at position 0, the next one at position 1, and so on.

Note that the charCodeAt function is intentionally generic; it does not require that its this value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.8.4.6 String.prototype.concat(string1, string2, …)

When the concat method is called with zero or more arguments string1, string2, etc., it returns a string
consisting of the characters of this object (converted to a string) followed by the characters of each of string1,
string2, etc. (where each argument is converted to a string). The result is a string value, not a String object.
The following steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Let R be Result(1).
3. Get the next argument in the argument list; if there are no more arguments, go to step 7.
4. Call ToString(Result(3)).
5. Let R be the string value consisting of the characters in the previous value of R followed by the characters

in Result(4).
6. Go to gtep 3.
7. Return R.

Note that the concat function is intentionally generic; it does not require that its this value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

15.8.4.7 String.prototype.indexOf(searchString, position)

If the given searchString appears as a substring of the result of converting this object to a string, at one or
more positions that are at or to the right of the specified position, then the index of the leftmost such position
is returned; otherwise -1 is returned. If position is undefined or not supplied, 0 is assumed, so as to search
all of the string.

When the indexOf method is called with two arguments searchString and position, the following steps are
taken:

1. Call ToString, giving it the this value as its argument.
2. Call ToString(searchString).
3. Call ToInteger(position). (If position is undefined or not supplied, this step produces the value 0).
4. Compute the number of characters in Result(1).
5. Compute min(max(Result(3), 0), Result(4)).
6. Compute the number of characters in the string that is Result(2).
7. Compute the smallest possible integer k not smaller than Result(5) such that k+Result(6) is not greater

than Result(4), and for all nonnegative integers j less than Result(6), the character at position k+j of
Result(1) is the same as the character at position j of Result(2); but if there is no such integer k, then
compute the value -1.

8. Return Result(7).

Note that the indexOf function is intentionally generic; it does not require that its this value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.
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15.8.4.8 String.prototype.lastIndexOf(searchString, position)

If the given searchString appears as a substring of the result of converting this object to a string, at one or
more positions that are at or to the left of the specified position, then the index of the rightmost such position
is returned; otherwise -1 is returned. If position is undefined or not supplied, the length of this string value
is assumed, so as to search all of the string.

When the lastIndexOf method is called with two arguments searchString and position, the following
steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Call ToString(searchString).
3. Call ToNumber(position). (If position is undefined or not supplied, this step produces the value NaN).
4. If Result(3) is NaN, use +∞∞; otherwise, call ToInteger(Result(3)).
5. Compute the number of characters in Result(1).
6. Compute min(max(Result(4), 0), Result(5)).
7. Compute the number of characters in the string that is Result(2).
8. Compute the largest possible integer k not larger than Result(6) such that k+Result(7) is not greater than

Result(5), and for all nonnegative integers j less than Result(7), the character at position k+j of Result(1)
is the same as the character at position j of Result(2); but if there is no such integer k, then compute the
value -1.

9. Return Result(8).

Note that the lastIndexOf function is intentionally generic; it does not require that its this value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.8.4.9 String.prototype.match(regexp)

The string is searched for one or more occurances of the regular expression pattern RegExp(regexp). If no
match is found, match returns null.

The regular expression match is performed beginning at the start of the string (ignoring the value of
RegExp(regexp).lastIndex).

If RegExp(regexp).global is false, the match is performed once.

If RegExp(regexp).global is true, the match is performed repeatedly until the match fails or no more
characters remain to be matched. The search for each match begins with the first character after the previous
match (for the first match, at the start of the string).  The empty substring immediately after the previous
match (or at the start of the string) is never matched.

The value returned is an array, the properties of which depend on the value of RegExp(regexp).global. For
non-global matches, the properties are the same as those returned by RegExp.prototype.exec:

The index property is set to the position of the matched substring within the complete string.

The input property is set to the string value.

The 0 property is set to the matched substring.

The properties 1 through n are set to the substrings matched by the corresponding parenthesized
subexpressions in the regular expression, where n is the number of such parenthesized subexpressions.

For global matches:

Let n be the number of times the entire regular expression was matched against the string; the properties
0 through n-1 are set to the corresponding substrings matched by the entire regular expression each time.

The index and input properties are not defined.

The lastIndex property of RegExp(regexp) is set to 0.

If (and only if) there is a match, the global RegExp object is updated with the results of the last successful
match as follows:
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The input and $_ properties are set to the empty string.

The lastMatch, “$&”, leftContext, “$‘”, rightContext, “$’”, $1 through $9, lastParen
and “$+” properties are updated as for RegExp.prototype.test.

15.8.4.10 String.prototype.replace(regexp, newSubStr)

The string is searched for one or more occurances of the regular expression pattern RegExp(regexp).

The match is performed as in String.prototype.match, including the update of the global RegExp object and
the update of RegExp(regexp).lastIndex.

The result is a string value derived from the original input string by replacing each matched substring with
ToString(newSubStr).  Within the replacement string, the characters “$&”, “$‘”, “$’”, “$+” and “$n”,
where n is a single digit 0-9, are replaced (in the result) by the corresponding matched substrings as
specified in section 15.9.5.3. If the “$” is escaped (that is, preceded by a “\” which is not itself escaped) it is
treated as an ordinary character.  (Note: if the replacement string is a StringLiteral, its escape sequences are
replaced before the string is seen by replace.  So a replacement string of the form “\$&” still has the
special behaviour, while “\\$&” substitutes the two characters “$” and “&” as does “\\\$&”.)

15.8.4.11 String.prototype.search(regexp)

The string is searched for an occurance of the regular expression pattern RegExp(regexp).

The match is performed as in String.prototype.match, including the update of the global RegExp object and
the update of RegExp(regexp).lastIndex.

The result is a number indicating the offset within the string where the pattern matched, or -1 if there was no
match.

15.8.4.12 String.prototype.slice(start)

When the slice method is called with one argument start, it returns a substring of the result of converting
this object to a string, starting from character position start and running to the end of the string. If start is
negative or zero, it is treated as (sourceLength+start) where sourceLength is the length of the string. The
result is a string value, not a String object. The following steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Call ToInteger(start).
3. Compute the number of characters in Result(1).
4. If Result(2) is non-negative, use Result(2); else use max(Result(3)+Result(2),0).
5. Compute (Result(3)-Result(4)).
6. Return a string containing Result(5) consecutive characters from Result(1) beginning with the character

at position Result(4).

15.8.4.13 String.prototype.slice(start, end)

When the slice method is called with two arguments start and end, it returns a substring of the result of
converting this object to a string, starting from character position start and running and running to, but not
including, character position end of the string. If start is negative, it is treated as (sourceLength+start) where
sourceLength is the length of the string. If end is negative, it is treated as (sourceLength+end) where
sourceLength is the length of the string. The result is a string value, not a String object. The following steps
are taken:

1. Call ToString, giving it the this value as its argument.
2. Call ToInteger(start).
3. Call ToInteger (end).
4. Compute the number of characters in Result(1).
5. If Result(2) is non-negative, use Result(2); else use max(Result(4)+Result(2),0).
6. If Result(3) is non-negative, use Result(3); else use max(Result(4)+Result(3),0).
7. Compute max(Result(6)-Result(5),0).
8. Return a string containing Result(7) consecutive characters from Result(1) beginning with the character

at position Result(5).
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Note that the slice function is intentionally generic; it does not require that its this value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

15.8.4.14 String.prototype.split(separator, limit)

Returns an Array object into which substrings of the result of converting this object to a string have been
stored. The substrings are determined by searching from left to right for occurrences of the given separator;
these occurrences are not part of any substring in the returned array, but serve to divide up this string value.
The separator may be a string of any length or it may be a RegExp object.

The separator may be an empty string, an empty regular expression, or a regular expression which can
match an empty string. Such a separator does not match the empty substring at the beginning of the input
string, nor does it match the empty substring at the end of the previous separator match. (For example, if the
separator is the empty string, the string is split up into individual characters; the length of the result array
equals the length of the string, and each substring contains one character.)

If the separator is not supplied, then the result array contains just one string, which is the string.

When the split method is called with one or two arguments separator and (optionally) limit, the following
steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Let A be a new array created as if by the expression new Array().
3. If separator is undefined or not supplied, call the [[Put]] method of A with “0” and Result(1) as

arguments, and then return A.
4. If limit is undefined or not supplied, use 231-1; else use ToUint32(limit).
5. Compute the number of characters in Result(1).
6. Let p be 0.
7. If separator is a RegExp object, go to step 16.
8. Call ToString(separator).
9. Compute the number of characters in the string that is Result(8).
1. If A.length is equal to Result(4), return A.
10. Compute the smallest possible nonnegative integer k not smaller than p such that k+Result(9) is greater

than p but not greater than Result(5), and for all nonnegative integers j less than Result(9), the character
at position k+j of Result(1) is the same as the character at position j of Result(8); but if there is no such
integer k, then go to step 26.

11. Compute a string value equal to the substring of Result(1) consisting of the characters at positions p
through k−1, inclusive.

12. Call the [[Put]] method of A with A.length and Result(12) as arguments.
13. Let p be k+Result(9).
14. Go to step 10.
15. If A.length is equal to Result(4), return A.
16. Compute the smallest possible integer k not smaller than p such that the substring of Result(1) beginning

at character position k and continuing to the end of Result(1) matches the regular expression pattern
represented by separator.  The empty substring at position p is not considered to match. If there are no
more occurances of the pattern, go to step 26.

17. Let m be the length of the substring matched in step 17.
18. Compute a string value equal to the substring of Result(1) consisting of the characters at positions p

through k−1, inclusive.
19. Call the [[Put]] method of A with A.length and Result(19) as arguments.
20. Let p be k+m.
21. If A.length is equal to Result(4), return A.
22. Form a string value corresponding to the characters in Result(1) which last matched the next

parenthesized regular expression in separator, as described in 15.9.5.3, in step 17.  If there are no more
such values, go to step 16.

23. Call the [[Put]] method of A with A.length and Result(23) as arguments.
24. Go to step 22.
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25. Compute a string value equal to the substring of Result(1) consisting of the characters from position p to
the end of Result(1).

26. Call the [[Put]] method of A with A.length and Result(26) as arguments.
27. Return A.

Note that the split function is intentionally generic; it does not require that its this value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

15.8.4.15 String.prototype.substr(start)

When the substr method is called with one argument start, it returns a substring of the result of
converting this object to a string, starting from character position start and running to the end of the string.
If start is negative, it is treated as (sourceLength+start) where sourceLength is the length of the string. The
result is a string value, not a String object. The following steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Call ToInteger(start).
3. Compute the number of characters in Result(1).
4. If Result(2) is positive or zero, use Result(2); else use max(Result(3)+Result(2),0).
5. Compute (Result(3)-Result(4)).
6. Return a string containing Result(5) consecutive characters from Result(1) beginning with the character

at position Result(4).

15.8.4.16 String.prototype.substr(start, length)

When the substr method is called with two arguments start and length, it returns a substring of the result
of converting this object to a string, starting from character position start and running for length characters.
If start is negative, it is treated as (sourceLength+start) where sourceLength is the length of the string. The
result is a string value, not a String object. The following steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Call ToInteger(start).
3. Call ToInteger (length).
4. Compute the number of characters in Result(1).
5. If Result(2) is positive or zero, use Result(2); else use max(Result(4)+Result(2),0).
6. Compute min(max(length,0), Result(4)-Result(5)).
7. Return a string containing Result(6) consecutive characters from Result(1) beginning with the character

at position Result(5).

Note that the substr function is intentionally generic; it does not require that its this value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

15.8.4.17 String.prototype.substring(start)

Returns a substring of the result of converting this object to a string, starting from character position start
and running to, but not including, character position end of the string. The result is a string value, not a
String object.

If the argument is NaN or negative, it is replaced with zero; if the argument is larger than the length of the
string, it is replaced with the length of the string.

When the substring method is called with one argument start, the following steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Call ToInteger(start).
3. Compute the number of characters in Result(1).
4. Compute min(max(Result(2), 0), Result(3)).
5. Compute (Result(3)-Result(4)).
6. Return a string containing Result(5) consecutive characters from Result(1) beginning with the character

at position Result(4).
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15.8.4.18 String.prototype.substring(start, end)

Returns a substring of the result of converting this object to a string, starting from character position start
and running to, but not including, character position end of the string. The result is a string value, not a
String object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the length of
the string, it is replaced with the length of the string.

When the substring method is called with two arguments start and end, the following steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Call ToInteger(start).
3. Call ToInteger (end).
4. Compute the number of characters in Result(1).
5. Compute min(max(Result(2), 0), Result(4)).
6. Compute min(max(Result(3), 0), Result(4)).
Compute max(Result(6)-Result(5), 0).
7. Return a string containing Result(7) consecutive characters from Result(1) beginning with the character

at position Result(5).

Note that the substring function is intentionally generic; it does not require that its this value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.8.4.19 String.prototype.toLowerCase

Returns a string equal in length to the length of the result of converting this object to a string. The result is a
string value, not a String object.

Every character of the result is equal to the corresponding character of the string, unless that character has a
Unicode 2.0 lowercase equivalent, in which case the lowercase equivalent is used instead. (The canonical
Unicode 2.0 case mapping shall be used, which does not depend on implementation or locale.)

Note that the toLowerCase function is intentionally generic; it does not require that its this value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.8.4.20 String.prototype.toUpperCase

Returns a string equal in length to the length of the result of converting this object to a string. The result is a
string value, not a String object.

Every character of the result is equal to the corresponding character of the string, unless that character has a
Unicode 2.0 uppercase equivalent, in which case the uppercase equivalent is used instead. (The canonical
Unicode 2.0 case mapping shall be used, which does not depend on implementation or locale.)

Note that the toUpperCase function is intentionally generic; it does not require that its this value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.8.5 Properties of String Instances

String instances inherit properties from the String prototype object and also have a [[Value]] property and a
length property.

The [[Value]] property is the string value represented by this String object.

15.8.5.1 length

The number of characters in the String value represented by this String object.

Once a String object is created, this property is unchanging. It has the attributes { DontEnum, DontDelete,
ReadOnly }.

15.9 RegExp (Regular Expression) Objects
A Regexp object contains a regular expression and the associated flags. The form and functionality of regular
expressions is modeled after the regular expression facility in the Perl programming language.
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15.9.1 Regular Expression Pattern Matching

A regular expression is specified by a character string in the form of RegularExpression (7.7.5). The
subexpressions of  a regular expression have the following meanings when used for pattern matching:

Subexpression Matched Text
literal
character

Any source character which is a ReLiteralCharacter.

. Any character except newline.
^ Start of string. The matched substring must begin with the the first character of the string

(after the portion ignored as specified by lastIndex). This character is only special
when it appears as the first character of the regular expression.

$ End of string. The matched substring must end with the the last character of the string.
This character is only special when it appears as the last character of the regular
expression.

x* Zero or more consecutive matches with subexpression x. The matched substrings need not
be identical.

x+ One or more consecutive matches with subexpression x. The matched substrings need not
be identical.

x? Zero or one consecutive matches with subexpression x.
X{n} Exactly n consecutive matches with subexpression x.
X{n,} At least n consecutive matches with subexpression x.
X{m,n} At least m and at most n consecutive matches with subexpression x.
X{n} Exactly n consecutive matches with subexpression x.
(x) The same pattern as subexpression x. The matched substring is available for use in a

subsequent “\n” pattern.

xy The subexpression x followed by the subexpression y.
x|y Either of the subexpressions x or y.
[pqr] Any character in pqr, which is a sequence of one or more source characters and/or

subranges of the form s-t. If the Unicode encoding of s is greater than the Unicode
encoding of t, a runtime error is generated. Only the characters ^, -, ] and \ need to be
escaped when intended as literal characters. The “^” character need be escaped only if it is
the first character in pqr. The “–” character need not be escaped if it is the first or last
character, or if it immediately follows a subrange. The escape sequences have their usual
meanings except for “\b” which matches the backspace character; “\B” which matches
“B”; and, for subranges only, “\d”, “\D”, “\s”, “\S”, “\w” and“\W”,  which match “d”,
“D”, “s”, “S”, “w” and “W”, respectively.

[^pqr] Any character not matched by “[pqr]”, including newline if pqr does not contain
newline.

\f The formfeed character.
\n The newline character.
\r The carriage return character.
\t The tab character.
\v The vertical tab character.
\s Any whitespace character; equivalent to “[ \f\n\r\t\v]”.

\S Any non-whitespace character; equivalent to “[^ \f\n\r\t\v]”.

\d Any decimal digit; equivalent to “[0-9]”.

\D Any character except a decimal digit; equivalent to “[^0-9]”.

\w Any character valid in an identifier; equivalent to “[a-zA-Z0-9_]”.

\W Any character not valid in an identifier; equivalent to “[a-zA-Z0-9_]”.
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\b Word boundary: a zero-length substring which is bounded on one side by a character which
matches “\w” and on the other side by a character which matches “\W” or the start of the
string or the end of the string.

\B Non-word boundary: a zero-length substring which does not match “\b”.

\cX The character formed by an exclusive OR of the character code with 64.
\n Either an OctalEscapeSequence or a backreference equivalent to the exact substring most

recently matched by the nth  parenthesized subexpression, as determined by the opening
left parenthesis of each such subexpression. If n begins with 0, or if the value of n (when
parsed and converted as DecimalDigits) is greater than 9 and also greater than the number
of parenthesized subexpressions, then \n is an OctalEscapeSequence; otherwise \n is a
backreference. If there is no corresponding parenthesized subexpression, or if the
subexpression does not participate in the match (because of the “|” operator or a zero
count), \n is treated as the empty string.

If the ignoreCase property (15.9.6.3) is true when a pattern match is performed, any letters in the string are
matched without considering distinctions between uppercase and lowercase.

An empty pattern matches the start of any string including the empty string.  (Note that String.prototype.match,
String.prototype.replace and String.prototype.split treat zero-length matches as a special case.)

TBD – specify the matching algorithm.

15.9.2 The RegExp Constructor Called as a Function

When RegExp is called as a function rather than as a constructor, it creates and initializes a new regular
expression object.

15.9.2.1 RegExp(pattern, flags)

A regular expression object is created and returned as if by the expression new Regexp (pattern, flags) .

15.9.2.2 RegExp(pattern)

A regular expression object is created and returned as if by the expression new Regexp (pattern) .

15.9.2.3 RegExp()

A regular expression object is created and returned as if by the expression new Regexp () .

15.9.3 The RegExp Constructor

When RegExp is called as part of a new expression, it is a constructor: it initializes the newly created object.

15.9.3.1 new RegExp(pattern, flags)

If pattern does not have the form RegularExpression or flags does not have the form
RegularExpressionFlags, a runtime error is generated.

The [[Prototype]] property of the newly constructed object is set to the original RegExp prototype object, the
one that is the initial value of RegExp.prototype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to “RegExp”.

The source property of the newly constructed object is set to an implementation-defined string value in the
form of a RegularExpression based on ToString(pattern). The “/” and newline characters have no special
meaning within this string, and need not be escaped. (Note: if pattern is a StringLiteral, the usual escape
sequence substitutions are performed before the string is processed by RegExp.  If pattern must contain an
escape sequence to be recognized by RegExp, the “\” character must be escaped within the StringLiteral to
prevent its being removed when the contents of the StringLiteral are formed.)

The global property of the newly constructed object is set to a boolean value indicating whether flags
contains the character ‘g’.
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The ignoreCase property of the newly constructed object is set to a boolean value indicating whether
flags contains the character ‘i’.

The lastIndex property of the newly constructed object is set to 0.

15.9.3.2 new RegExp(pattern)

If pattern does not have the form RegularExpression a runtime error is generated.

The [[Prototype]] property of the newly constructed object is set to the original RegExp prototype object, the
one that is the initial value of RegExp.prototype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to “RegExp”.

The source property of the newly constructed object is set to an implementation-defined string value in the
form of a RegularExpression based on ToString(pattern). The “/” and newline characters have no special
meaning within this string, and need not be escaped. (See the note in 15.9.3.1.)

The global property of the newly constructed object is set to a false.

The ignoreCase property of the newly constructed object is set false.

The lastIndex property of the newly constructed object is set to 0.

15.9.3.3 new RegExp()

The [[Prototype]] property of the newly constructed object is set to the original RegExp prototype object, the
one that is the initial value of RegExp.prototype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to “RegExp”.

The source property of the newly constructed object is set to the empty string.

The global property of the newly constructed object is set to a false.

The ignoreCase property of the newly constructed object is set false.

The lastIndex property of the newly constructed object is set to 0.

15.9.4 Properties of the RegExp Constructor

The value of the internal [[Prototype]] property of the RegExp constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties, the RegExp constructor has the following properties:

15.9.4.1 RegExp.prototype

The initial value of RegExp.prototype is the built-in RegExp prototype object (15.9.5).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.9.4.2 RegExp.length

The length property is 2.

15.9.5 Properties of the RegExp Prototype Object

The value of the internal [[Prototype]] property of the String prototype object is the Object prototype object
(15.2.3.1).

The Function prototype object does not have a valueOf property of its own; however, it inherits the
valueOf property from the Object prototype object.

15.9.5.1 RegExp.prototype.constructor

The initial value of RegExp.prototype.constructor is the built-in RegExp constructor.
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15.9.5.2 RegExp.prototype.compile(pattern, flags)

The source property is set to an implementation-defined string value in the form of a
RegularExpressionLiteral based on ToString(pattern) and ToString(flags). If pattern does not have the form
RegularExpression or flags does not have the form RegularExpressionFlags, a runtime error is generated.

The global property is set to a boolean value indicating whether flags contains the character ‘g’.

The ignoreCase property object is set to a boolean value indicating whether flags contains the character
‘i’.

The lastIndex property is set to 0.

15.9.5.3 RegExp.prototype.exec(string)

Performs a regular expression match of string against the regular expression and returns an Array object
containing the results of the match, or null if the string did not match. If string is omitted, the value of the
input property of the global RegExp object (15.9.7) is used as the value of string.

The string ToString(string) is searched for an occurance of the regular expression pattern, beginning at the
character position specified by the value of the lastIndex property. If the value of the lastIndex
property is greater than or equal to the length of the string, the empty string is used.

If the global property is true, the lastIndex  property is set to the position of the first character
following the matched substring, relative to the complete original string including the portion ignored as
specified by the old value of lastIndex. If no match was found (and global is true), lastIndex is
set to 0.

If there is a match, exec returns an array with the following properties:

The index property is set to the position of the matched substring within the complete string.

The input property is set to string.

The 0 property is set to the matched substring.

The properties 1 through n are set to the substrings matched by the corresponding parenthesized
subexpressions in the regular expression, where n is the number of such parenthesized subexpressions.

If (and only if) there is a match, the global RegExp object is updated as follows:

The input and $_ properties are set to the argument string.

The lastMatch and “$&” properties are set to the substring matched in the argument string.

The leftContext and “$‘” properties are set to the portion of the argument string which precedes the
matched substring, not including the portion ignored as specified by the old value of lastIndex. The
two properties share one value.

The rightContext and “$’” properties are set to the portion of the argument string which follows the
matched substring.

The $1 through $9 properties are set to the substrings matched by the corresponding parenthesized
subexpressions in the regular expression. If a parenthesized subexpression matched more than once
(because it is followed by “*”, “+” or a brace-enclosed range), the last matched substring is used. If there
is no corresponding parenthesized subexpression, or if the corresponding subexpression does not
participate in the match (because of the “|” operator or a zero count), the value is the empty string.

The lastParen and “$+” properties are set to the substring matched by the last parenthesized
subexpressions in the regular expression, for the matched substring.
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15.9.5.4 RegExp.prototype.test(string)

Performs a regular expression match of string against the regular expression and returns a boolean value
indicating whether the match succeeded. If string is omitted, the value of the input property of the global
RegExp object (15.9.7) is used as the value of string.

The string ToString(string) is searched for an occurance of the regular expression pattern, beginning at the
character position specified by the value of the lastIndex property. If the value of the lastIndex
property is greater than or equal to the length of the string, the empty string is used.

The lastIndex property and the global RegExp object are updated as for exec.

15.9.5.5 RegExp.prototype.toString()

Returns a string value formed by concatenating the strings “/”,  the value of the source property, and
“/”; plus “g” if  the global property is true, and “i” if the ignoreCase property is true.

15.9.6 Properties of RegExp Instances

RegExp instances inherit properties from their [[Prototype]] object as specified above and also have the
following properties.

15.9.6.1 source

The value of the source property is string in the form of a RegularExpressionLiteral representing the
current regular expression. This property shall have the attributes { DontDelete, ReadOnly }.

15.9.6.2 global

The value of the global property is a boolean value indicating whether the most recently specified flags
contained the character ‘g’. This property shall have the attributes { DontDelete, ReadOnly }.

15.9.6.3 ignoreCase

The value of the ignoreCase property is a boolean value indicating whether the most recently specified
flags contained the character ‘i’. This property shall have the attributes { DontDelete, ReadOnly }.

15.9.6.4 lastIndex

The value of the lastIndex property is an integer which specifies the string position at which to start the
next match. This property shall have the attributes { DontDelete }.

15.9.7 The global RegExp Object

The value of RegExp property of the global object is a RegExp object which contains additional properties
used by the regular expression methods. The RegExp property itself shall have attributes { DontEnum,
DontDelete, ReadOnly }.

15.9.7.1 input and $_

The value of the input and $_ properties is the most recent string against which a regular expression was
matched. If no string is provided for a match, the value of this property is used. The two properties share one
value; they shall have attributes { DontDelete }.

15.9.7.2 lastMatch and “$&”

The value of the lastMatch and “$&” properties of are set to the substring matched in the most recent
regular expression match. The two properties share one value; they shall have attributes { DontDelete,
ReadOnly }.

15.9.7.3 leftContext and “$‘”

The value of the leftContext and “$‘” properties is the portion of the input string which precedes the
matched substring in the most recent regular expression match. The two properties share one value; they
shall have attributes { DontDelete, ReadOnly }.
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15.9.7.4 rightContext and “$’”

The value of the rightContext and “$‘” properties is the portion of input string which follows the
matched substring in the most recent regular expression match. The two properties share one value; they
shall have attributes { DontDelete, ReadOnly }.

15.9.7.5 $1 through $9

The values of the $1 through $9 properties are the substrings matched by the corresponding parenthesized
subexpressions in the most recent regular expression match. These properties shall have attributes
{ DontDelete, ReadOnly }.

15.9.7.6 lastParen and “$&”

The value of the lastParen and “$+” properties is the substring matched by the last parenthesized
subexpression in the most recent regular expression match. The two properties share one value; they shall
have attributes { DontDelete, ReadOnly }.

15.10 Boolean Objects

15.10.1 The Boolean Constructor Called as a Function

When Boolean is called as a function rather than as a constructor, it performs a type conversion.

15.10.1.1 Boolean(value)

Returns a boolean value (not a Boolean object) computed by ToBoolean(value).

15.10.1.2 Boolean()

Returns false.

15.10.2 The Boolean Constructor

When Boolean is called as part of a new expression, it is a constructor: it initializes the newly created object.

15.10.2.1 new Boolean(value)

The [[Prototype]] property of the newly constructed object is set to the original Boolean prototype object, the
one that is the initial value of Boolean.prototype (15.10.3.1).

The [[Class]] property of the newly constructed Boolean object is set to “Boolean”.

The [[Value]] property of the newly constructed Boolean object is set to ToBoolean(value).

15.10.2.2 new Boolean()

The [[Prototype]] property of the newly constructed object is set to the original Boolean prototype object, the
one that is the initial value of Boolean.prototype (15.10.3.1).

The [[Class]] property of the newly constructed Boolean object is set to “Boolean”.

The [[Value]] property of the newly constructed Boolean object is set to false.

15.10.3 Properties of the Boolean Constructor

The value of the internal [[Prototype]] property of the Boolean constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties and the length property, the Boolean constructor
has the following property:

15.10.3.1 Boolean.prototype

The initial value of Boolean.prototype is the built-in Boolean prototype object (15.10.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.10.4 Properties of the Boolean Prototype Object

The Boolean prototype object is itself a Boolean object (its [[Class]] is “Boolean”) whose value is false.

The value of the internal [[Prototype]] property of the Boolean prototype object is the Object prototype object
(15.2.3.1).
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In following descriptions of functions that are properties of the Boolean prototype object, the phrase “this
Boolean object” refers to the object that is the this value for the invocation of the function; it is a runtime
error if this does not refer to an object for which the value of the internal [[Class]] property is “Boolean”.
Also, the phrase “this boolean value” refers to the boolean value represented by this Boolean object, that is, the
value of the internal [[Value]] property of this Boolean object.

15.10.4.1 Boolean.prototype.constructor

The initial value of Boolean.prototype.constructor is the built-in Boolean constructor.

15.10.4.2 Boolean.prototype.toString()

If this boolean value is true, then the string “true” is returned. Otherwise, this boolean value must be
false, and the string “false” is returned.

The toString function is not generic; it generates a runtime error if its this value is not a Boolean
object. Therefore it cannot be transferred to other kinds of objects for use as a method.

15.10.4.3 Boolean.prototype.valueOf()

Returns this boolean value.

The valueOf function is not generic; it generates a runtime error if its this value is not a Boolean object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

15.10.5 Properties of Boolean Instances

Boolean instances have no special properties beyond those inherited from the Boolean prototype object.

15.11 Number Objects

15.11.1 The Number Constructor Called as a Function

When Number is called as a function rather than as a constructor, it performs a type conversion.

15.11.1.1 Number(value)

Returns a number value (not a Number object) computed by ToNumber(value).

15.11.1.2 Number()

Returns +0.

15.11.2 The Number Constructor

When Number is called as part of a new expression, it is a constructor: it initializes the newly created object.

15.11.2.1 new Number(value)

The [[Prototype]] property of the newly constructed object is set to the original Number prototype object, the
one that is the initial value of Number.prototype (15.11.3.1).

The [[Class]] property of the newly constructed object is set to “Number”.

The [[Value]] property of the newly constructed object is set to ToNumber(value).

15.11.2.2 new Number()

The [[Prototype]] property of the newly constructed object is set to the original Number prototype object, the
one that is the initial value of Number.prototype (15.11.3.1).

The [[Class]] property of the newly constructed object is set to “Number”.

The [[Value]] property of the newly constructed object is set to +0.

15.11.3 Properties of the Number Constructor

The value of the internal [[Prototype]] property of the Number constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties and the length property, the Number constructor
has the following property:
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15.11.3.1 Number.prototype

The initial value of Number.prototype is the built-in Number prototype object (15.11.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.11.3.2 Number.MAX_VALUE

The value of Number.MAX_VALUE is the largest positive finite value of the number type, which is
approximately 1.7976931348623157e308.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.11.3.3 Number.MIN_VALUE

The value of Number.MIN_VALUE is the smallest positive nonzero value of the number type, which is
approximately 5e-324.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.11.3.4 Number.NaN

The value of Number.NaN is NaN.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.11.3.5 Number.NEGATIVE_INFINITY

The value of Number.NEGATIVE_INFINITY is −−∞∞.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.11.3.6 Number.POSITIVE_INFINITY

The value of Number.POSITIVE_INFINITY is +∞∞.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.11.4 Properties of the Number Prototype Object

The Number prototype object is itself a Number object (its [[Class]] is “Number”) whose value is +0.

The value of the internal [[Prototype]] property of the Number prototype object is the Object prototype object
(15.2.3.1).

In following descriptions of functions that are properties of the Number prototype object, the phrase “this
Number object” refers to the object that is the this value for the invocation of the function; it is a runtime
error if this does not refer to an object for which the value of the internal [[Class]] property is “Number”.
Also, the phrase “this number value” refers to the number value represented by this Number object, that is, the
value of the internal [[Value]] property of this Number object.

15.11.4.1 Number.prototype.constructor

The initial value of Number.prototype.constructor is the built-in Number constructor.

15.11.4.2 Number.prototype.toString(radix)

If the radix is the number 10 or not supplied, then this number value is given as an argument to the ToString
operator; the resulting string value is returned.

If the radix is supplied and is an integer from 2 to 36, but not 10, the result is a string, the choice of which is
implementation-dependent.

The toString function is not generic; it generates a runtime error if its this value is not a Number
object. Therefore it cannot be transferred to other kinds of objects for use as a method.

15.11.4.3 Number.prototype.valueOf()

Returns this number value.

The valueOf function is not generic; it generates a runtime error if its this value is not a Number object.
Therefore it cannot be transferred to other kinds of objects for use as a method.
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15.11.5 Properties of Number Instances

Number instances have no special properties beyond those inherited from the Number prototype object.

15.12 The Math Object
The Math object is merely a single object that has some named properties, some of which are functions.

The value of the internal [[Prototype]] property of the Math object is the Object prototype object (15.2.3.1).

The Math object does not have a [[Construct]] property; it is not possible to use the Math object as a constructor
with the new operator.

The Math object does not have a [[Call]] property; it is not possible to invoke the Math object  as a function.

Recall that, in this specification, the phrase “the number value for x” has a technical meaning defined in section .

15.12.1 Value Properties of the Math Object

15.12.1.1 E

The number value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.12.1.2 LN10

The number value for the natural logarithm of 10, which is approximately 2.302585092994046.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.12.1.3 LN2

The number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.12.1.4 LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 1.4426950408889634. (Note that the value of Math.LOG2E is approximately the
reciprocal of the value of Math.LN2.)

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.12.1.5 LOG10E

The number value for the base-10 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518. (Note that the value of Math.LOG10E is approximately the
reciprocal of the value of Math.LN10.)

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.12.1.6 PI

The number value for π, the ratio of the circumference of a circle to its diameter, which is approximately
3.14159265358979323846.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.12.1.7 SQRT1_2

The number value for the square root of ½, which is approximately 0.7071067811865476. (Note that
the value of Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT2.)

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.12.1.8 SQRT2

The number value for the square root of 2, which is approximately 1.4142135623730951.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.
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15.12.2 Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in left-to-right
order if there is more than one) and then performs a computation on the resulting number value(s).

The behaviour of the functions acos, asin, atan, atan2, cos, exp, log, pow, sin, and sqrt is not
precisely specified here. They are intended to compute approximations to the results of familiar mathematical
functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is that an
implementor should be able to use the same mathematical library for ECMAScript on a given hardware
platform that is available to C programmers on that platform. Nevertheless, this specification recommends
(though it does not require) the approximation algorithms for IEEE 754 arithmetic contained in fdlibm, the
freely distributable mathematical library [SunPro 1993]. This specification also requires specific results for
certain argument values that represent boundary cases of interest.

15.12.2.1 abs(x)

Returns the absolute value of its argument; in general, the result has the same magnitude as the argument
but has positive sign.

• If the argument is NaN, the result is NaN.
• If the argument is −−0, the result is +0.
• If the argument is −−∞∞, the result is +∞∞.

15.12.2.2 acos(x)

Returns an implementation-dependent approximation to the arc cosine of the argument. The result is
expressed in radians and ranges from +0 to +π.

• If the argument is NaN, the result is NaN.
• If the argument is greater than 1, the result is NaN.
• If the argument is less than -1, the result is NaN.
• If the argument is exactly 1, the result is +0.

15.12.2.3 asin(x)

Returns an implementation-dependent approximation to the arc sine of the argument. The result is expressed
in radians and ranges from −π/2 to +π/2.

• If the argument is NaN, the result is NaN.
• If the argument is greater than 1, the result is NaN.
• If the argument is less than -1, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is −−0, the result is −−0.

15.12.2.4 atan(x)

Returns an implementation-dependent approximation to the arc tangent of the argument. The result is
expressed in radians and ranges from −π/2 to +π/2.

• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is −−0, the result is −−0.
• If the argument is +∞∞, the result is an implementation-dependent approximation to +π/2.
• If the argument is −−∞∞, the result is an implementation-dependent approximation to −π/2.

15.12.2.5 atan2(y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the
arguments y and x, where the signs of the arguments  are used to determine the quadrant of the result. Note
that it is intentional and traditional for the two-argument arc tangent function that the argument named y be
first and the argument named x be second. The result is expressed in radians and ranges from −π to +π.

• If either argument is NaN, the result is NaN.
• If y>0 and x is +0, the result is an implementation-dependent approximation to  +π/2.
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• If y>0 and x is −−0, the result is an implementation-dependent approximation to  +π/2.
• If y is +0 and x>0, the result is +0.
• If y is +0 and x is +0, the result is +0.
• If y is +0 and x is −−0, the result is an implementation-dependent approximation to  +π.
• If y is +0 and x<0, the result is an implementation-dependent approximation to  +π.
• If y is −−0 and x>0, the result is −−0.
• If y is −−0 and x is +0, the result is −−0.
• If y is −−0 and x is −−0, the result is an implementation-dependent approximation to  −π.
• If y is −−0 and x<0, the result is an implementation-dependent approximation to  −π.
• If y<0 and x is +0, the result is an implementation-dependent approximation to  −π/2.
• If y<0 and x is −−0, the result is an implementation-dependent approximation to  −π/2.
• If y>0 and y is finite and x is +∞∞, the result is +0.
• If y>0 and y is finite and x is −−∞∞, the result if an implementation-dependent approximation to  +π.
• If y<0 and y is finite and x is +∞∞, the result is −−0.
• If y<0 and y is finite and x is −−∞∞, the result is an implementation-dependent approximation to  −π.
• If y is +∞∞ and x is finite, the result is an implementation-dependent approximation to  +π/2.
• If y is −−∞∞ and x is finite, the result is an implementation-dependent approximation to  −π/2.
• If y is +∞∞ and x is +∞∞, the result is an implementation-dependent approximation to  +π/4.
• If y is +∞∞ and x is −−∞∞, the result is an implementation-dependent approximation to  +3π/4.
• If y is −−∞∞ and x is +∞∞, the result is an implementation-dependent approximation to  −π/4.
• If y is −−∞∞ and x is −−∞∞, the result is an implementation-dependent approximation to  −3π/4.

15.12.2.6 ceil(x)

Returns the smallest (closest to −−∞∞) number value that is not less than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument itself.

• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is −−0, the result is −−0.
• If the argument is +∞∞, the result is +∞∞.
• If the argument is −−∞∞, the result is −−∞∞.
• If the argument is less than 0 but greater than -1, the result is −−0.

The value of Math.ceil(x) is the same as the value of -Math.floor(-x).

15.12.2.7 cos(x)

Returns an implementation-dependent approximation to the cosine of the argument. The argument is
expressed in radians.

• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is 1.
• If the argument is −−0, the result is 1.
• If the argument is +∞∞, the result is NaN.
• If the argument is −−∞∞, the result is NaN.

15.12.2.8 exp(x)

Returns an implementation-dependent approximation to the exponential function of the argument (e raised
to the power of the argument, where e is the base of the natural logarithms).

• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is 1.
• If the argument is −−0, the result is 1.
• If the argument is +∞∞, the result is +∞∞.
• If the argument is −−∞∞, the result is +0.
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15.12.2.9 floor(x)

Returns the greatest (closest to +∞∞) number value that is not greater than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument itself.

• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is −−0, the result is −−0.
• If the argument is +∞∞, the result is +∞∞.
• If the argument is −−∞∞, the result is −−∞∞.
• If the argument is greater than 0 but less than 1, the result is +0.

The value of Math.floor(x) is the same as the value of -Math.ceil(-x).

15.12.2.10 log(x)

Returns an implementation-dependent approximation to natural logarithm of the argument.

• If the argument is NaN, the result is NaN.
• If the argument is less than 0, the result is NaN.
• If the argument is +0 or −−0, the result is −−∞∞.
• If the argument is 1, the result is +0.
• If the argument is +∞∞, the result is +∞∞.

15.12.2.11 max(value1, value2, …)

Given one or more arguments, returns the largest of the arguments.

• If any argument is NaN, the result is NaN.
• The comparison of values to determine the largest value is done as in 11.8.5 except that +0 is considered

larger than –0.

15.12.2.12 min(value1, value2, …)

Given one or more arguments, returns the smallest of the arguments.

• If any argument is NaN, the result is NaN.
• The comparison of values to determine the smallest value is done as in 11.8.5 except that +0 is

considered larger than –0.

15.12.2.13 pow(x, y)

Returns an implementation-dependent approximation to the result of raising x to the power y.

• If y is NaN, the result is NaN.
• If y is +0, the result is 1, even if x is NaN.
• If y is −−0, the result is 1, even if x is NaN.
• If x is NaN and y is nonzero, the result is NaN.
• If abs(x)>1 and y is +∞∞, the result is +∞∞.
• If abs(x)>1 and y is −−∞∞, the result is +0.
• If abs(x)==1 and y is +∞∞, the result is NaN.
• If abs(x)==1 and y is −−∞∞, the result is NaN.
• If abs(x)<1 and y is +∞∞, the result is +0.
• If abs(x)<1 and y is −−∞∞, the result is +∞∞.
• If x is +∞∞ and y>0, the result is +∞∞.
• If x is +∞∞ and y<0, the result is +0.
• If x is −−∞∞ and y>0 and y is an odd integer, the result is −−∞∞.
• If x is −−∞∞ and y>0 and y is not an odd integer, the result is +∞∞.
• If x is −−∞∞ and y<0 and y is an odd integer, the result is −−0.
• If x is −−∞∞ and y<0 and y is not an odd integer, the result is +0.
• If x is +0 and y>0, the result is +0.
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• If x is +0 and y<0, the result is +∞∞.
• If x is −−0 and y>0 and y is an odd integer, the result is −−0.
• If x is −−0 and y>0 and y is not an odd integer, the result is +0.
• If x is −−0 and y<0 and y is an odd integer, the result is −−∞∞.
• If x is −−0 and y<0 and y is not an odd integer, the result is +∞∞.
• If x<0 and x is finite and y is finite and y is not an integer, the result is NaN.

15.12.2.14 random()

Returns a number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly or
pseudorandomly with approximately uniform distribution over that range, using an implementation-
dependent algorithm or strategy. This function takes no arguments.

15.12.2.15 round(x)

Returns the number value that is closest to the argument and is equal to a mathematical integer. If two
integer number values are equally close to the argument, then the result is the number value that is closer to
+∞∞. If the argument is already an integer, the result is the argument itself.

• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is −−0, the result is −−0.
• If the argument is +∞∞, the result is +∞∞.
• If the argument is −−∞∞, the result is −−∞∞.
• If the argument is greater than 0 but less than 0.5, the result is +0.
• If the argument is less than 0 but greater than or equal to -0.5, the result is −−0.

Note that Math.round(3.5) returns 4, but Math.round(-3.5) returns -3.

The value of Math.round(x) is the same as the value of Math.floor(x+0.5), except when x is −−0
or is less than 0 but greater than or equal to -0.5; for these cases Math.round(x) returns −−0, but
Math.floor(x+0.5) returns +0.

15.12.2.16 sin(x)

Returns an implementation-dependent approximation to the sine of the argument. The argument is expressed
in radians.

• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is −−0, the result is −−0.
• If the argument is +∞∞ or −−∞∞, the result is NaN.

15.12.2.17 sqrt(x)

Returns an implementation-dependent approximation to the square root of the argument.

• If the argument is NaN, the result is NaN.
• If the argument less than 0, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is −−0, the result is −−0.
• If the argument is +∞∞, the result is +∞∞.

15.12.2.18 tan(x)

Returns an implementation-dependent approximation to the tangent of the argument. The argument is
expressed in radians.

• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is −−0, the result is −−0.
• If the argument is +∞∞ or −−∞∞, the result is NaN.
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15.13 Date Objects

15.13.1 Overview of Date Objects and Definitions of Internal Operators

A Date object contains a number indicating a particular instant in time to within a millisecond. The number
may also be NaN, indicating that the Date object does not represent a specific instant of time.

The following sections define a number of functions for operating on time values. Note that, in every case, if
any argument to such a function is NaN, the result will be NaN.

15.13.1.1 Time Range

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. Leap seconds are ignored. It
is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript number values can
represent all integers from iMin = –9,007,199,254,740,991 to iMax = 9,007,199,254,740,991; this range
suffices to measure times to millisecond precision for any instant that is within approximately 285,616 years,
either forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly –100,000,000
days to 100,000,000 days measured relative to midnight at the beginning of 01 January, 1970 UTC. This
gives a range of 8,640,000,000,000,000 milliseconds to either side of 01 January, 1970 UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the value +0.

15.13.1.2 Day Number and Time within Day

A given time value t belongs to day number

Day(t) = floor(t / msPerDay)

where the number of milliseconds per day is

msPerDay = 86400000

The remainder is called the time within the day:

TimeWithinDay(t) = t modulo msPerDay

15.13.1.3 Year Number

ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and to determine
the month and date within that year. In this system, leap years are precisely those which are (divisible by 4)
and ((not divisible by 100) or (divisible by 400)). The number of days in year number y is therefore defined
by

DaysInYear(y) = 365 if (y modulo 4) ≠ 0
= 366 if (y modulo 4) = 0 and (y modulo 100) ≠ 0
= 365 if (y modulo 100) = 0 and (y modulo 400) ≠ 0
= 366 if (y modulo 400) = 0

All non-leap years have 365 days with the usual number of days per month and leap years have an extra day
in February. The day number of the first day of year y is given by:

DayFromYear(y) = 365⋅(y−1970) + floor((y−1969)/4) − floor((y−1901)/100) + floor((y−1601)/400)

The time value of the start of a year is:

TimeFromYear(y)= msPerDay⋅DayFromYear(y)

A time value determines a year by:

YearFromTime(t) = the largest integer y (closest to positive infinity) such that TimeFromYear(y) ≤ t

The leap-year function is 1 for a time within a leap year and otherwise is zero:



ECMAScript  Language Specificat ion with Netscape Proposals  22-Apr-98

112

InLeapYear(t) = 0 if DaysInYear(YearFromTime(t)) = 365
= 1 if DaysInYear(YearFromTime(t)) = 366

15.13.1.4 Month Number

Months are identified by an integer in the range 0 to 11, inclusive. The mapping MonthFromTime(t) from a
time value t to a month number is defined by:

MonthFromTime(t) = 0 if 0 ≤ DayWithinYear(t) < 31
= 1 if 31 ≤ DayWithinYear (t) < 59+InLeapYear(t)
= 2 if 59+InLeapYear(t) ≤ DayWithinYear (t) < 90+InLeapYear(t)
= 3 if 90+InLeapYear(t) ≤ DayWithinYear (t) < 120+InLeapYear(t)
= 4 if 120+InLeapYear(t) ≤ DayWithinYear (t) < 151+InLeapYear(t)
= 5 if 151+InLeapYear(t) ≤ DayWithinYear (t) < 181+InLeapYear(t)
= 6 if 181+InLeapYear(t) ≤ DayWithinYear (t) < 212+InLeapYear(t)
= 7 if 212+InLeapYear(t) ≤ DayWithinYear (t) < 243+InLeapYear(t)
= 8 if 243+InLeapYear(t) ≤ DayWithinYear (t) < 273+InLeapYear(t)
= 9 if 273+InLeapYear(t) ≤ DayWithinYear (t) < 304+InLeapYear(t)
= 10 if 304+InLeapYear(t) ≤ DayWithinYear (t) < 334+InLeapYear(t)
= 11 if 334+InLeapYear(t) ≤ DayWithinYear (t) < 365+InLeapYear(t)

where

DayWithinYear(t)= Day(t)−DayFromYear(YearFromTime(t))

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April; 4 specifies
May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9 specifies October; 10
specifies November; and 11 specifies December. Note that MonthFromTime(0) = 0, corresponding to
Thursday, 01 January, 1970.

15.13.1.5 Date Number

A date number is identified by an integer in the range 1 through 31, inclusive. The mapping
DateFromTime(t) from a time value t to a month number is defined by:

DateFromTime(t) = DayWithinYear(t)+1 if MonthFromTime(t)=0
= DayWithinYear(t)−30 if MonthFromTime(t)=1
= DayWithinYear(t)−58−InLeapYear(t) if MonthFromTime(t)=2
= DayWithinYear(t)−89−InLeapYear(t) if MonthFromTime(t)=3
= DayWithinYear(t)−119−InLeapYear(t) if MonthFromTime(t)=4
= DayWithinYear(t)−150−InLeapYear(t) if MonthFromTime(t)=5
= DayWithinYear(t)−180−InLeapYear(t) if MonthFromTime(t)=6
= DayWithinYear(t)−211−InLeapYear(t) if MonthFromTime(t)=7
= DayWithinYear(t)−242−InLeapYear(t) if MonthFromTime(t)=8
= DayWithinYear(t)−272−InLeapYear(t) if MonthFromTime(t)=9
= DayWithinYear(t)−303−InLeapYear(t) if MonthFromTime(t)=10
= DayWithinYear(t)−333−InLeapYear(t) if MonthFromTime(t)=11

15.13.1.6 Week Day

The week day for a particular time value t is defined as

WeekDay(t) = (Day(t) + 4) modulo 7

A weekday value  of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies Wednesday;
4 specifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0) = 4, corresponding
to Thursday, 01 January, 1970.

15.13.1.7 Local Time Zone Adjustment

An implementation of ECMAScript is expected to determine the local time zone adjustment The local time
zone adjustment is a value LocalTZA measured in milliseconds which when added to UTC represents the
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local standard time. Daylight saving time is not reflected by LocalTZA. The value LocalTZA does not vary
with time but depends only on the geographic location.

15.13.1.8 Daylight Saving Time Adjustment

An implementation of ECMAScript is expected to determine the daylight saving time algorithm The
algorithm to determine the daylight saving time adjustment DaylightSavingTA(t), measured in milliseconds,
must depend only on four things:

(1) the time since the beginning of the year

t – TimeFromYear(YearFromTime(t))

(2) whether t is in a leap year

InLeapYear(t)

(3) the week day of the beginning of the year

WeekDay(TimeFromYear(YearFromTime(t))

and (4) the geographic location.

The implementation of ECMAScript should not try to determine whether the exact time was subject to
daylight saving time, but just whether daylight saving time would have been in effect if the current daylight
saving time algorithm had been used at the time. This avoids complications such as taking into account the
years that the locale observed daylight saving time year round.

If the underlying operating system provides functionality for determining daylight saving time, the
implementation of ECMAScript is free to map the year in question to an equivalent year (same leap-year-
ness and same starting week day for the year) for which the operating system provides daylight saving time
information. The only restriction is that all equivalent years should produce the same result.

15.13.1.9 Local Time

Conversion from UTC to local time is defined by

LocalTime(t) = t + LocalTZA + DaylightSavingTA(t)

Conversion from local time to UTC is defined by

UTC(t) = t – LocalTZA – DaylightSavingTA (t – LocalTZA)

Note that UTC(LocalTime(t)) is not necessarily always equal to t.

15.13.1.10 Hours, Minutes, Second, and Milliseconds

The following functions are useful in decomposing time values:

HourFromTime(t) = floor(t / msPerHour) modulo HoursPerDay

MinFromTime(t) = floor(t / msPerMinute) modulo MinutesPerHour

SecFromTime(t) = floor(t / msPerSecond) modulo SecondsPerMinute

msFromTime(t) = t modulo msPerSecond

where

HoursPerDay = 24

MinutesPerHour = 60

SecondsPerMinute = 60

msPerSecond = 1000

msPerMinute = msPerSecond ⋅ SecondsPerMinute = 60000



ECMAScript  Language Specificat ion with Netscape Proposals  22-Apr-98

114

msPerHour = msPerMinute ⋅ MinutesPerHour = 3600000

15.13.1.11 MakeTime(hour, min, sec, ms)

The operator MakeTime calculates a number of milliseconds from its four arguments, which must be
ECMAScript number values. This operator functions as follows:

1. If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.
2. Call ToInteger(hour).
3. Call ToInteger(min).
4. Call ToInteger(sec).
5. Call ToInteger(ms).
6. Compute Result(2) * msPerHour + Result(3) * msPerMinute + Result(4) * msPerSecond + Result(5),

performing the arithmetic according to IEEE 754 rules (that is, as if using the ECMAScript operators *
and +).

7. Return Result(6).

15.13.1.12 MakeDay(year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be ECMAScript
number values. This operator functions as follows:

1. If year is not finite or month is not finite or date is not finite, return NaN.
2. Call ToInteger(year).
3. Call ToInteger(month).
4. Call ToInteger(date).
5. Compute Result(2) + floor(Result(3)/12).
6. Compute Result(3) modulo 12.
7. Find a value t such that YearFromTime(t)==Result(5) and MonthFromTime(t)==Result(6) and

DateFromTime(t)==1; but if this is not possible (because some argument is out of range), return NaN.
8. Compute Day(Result(7)) + Result(4) − 1.
9. Return Result(8).

15.13.1.13 MakeDate(day, time)

The operator MakeDate calculates a number of milliseconds from its two arguments, which must be
ECMAScript number values. This operator functions as follows:

1. If day is not finite or time is not finite, return NaN.
2. Compute day  ⋅ msPerDay + time.
3. Return Result(2).

15.13.1.14 TimeClip(time)

The operator TimeClip calculates a number of milliseconds from its argument, which must be an
ECMAScript number value. This operator functions as follows:

1. If time is not finite, return NaN.
2. If abs(Result(1)) > 8.64e15 (that is, 8.64 ⋅ 1015), return NaN.
3. Return an implementation-dependent choice of either ToInteger(Result(2)) or ToInteger(Result(2)) +

(+0). (Adding a positive zero converts −−0 to +0.)

The point of step 3 is that an implementation is permitted a choice of internal representations of time values,
for example as a 64-bit signed integer or as a 64-bit floating-point value. Depending on the implementation,
this internal representation may or may not distinguish −−0 and +0.

15.13.2 The Date Constructor Called As a Function

When Date is called as a function rather than as a constructor, it returns a string representing the current time
(UTC). Note that the function call Date (...) is not equivalent to the object creation expression
new Date (...) with the same arguments.
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15.13.2.1 Date(year, month, date, hours, minutes, seconds, ms)

The arguments are accepted but are completely ignored. A string is created and returned as if by the
expression (new Date ()).toString().

15.13.2.2 Date(year, month, date, hours, minutes, seconds)

The arguments are accepted but are completely ignored. A string is created and returned as if by the
expression (new Date ()).toString().

15.13.2.3 Date(year, month, date, hours, minutes)

The arguments are accepted but are completely ignored. A string is created and returned as if by the
expression (new Date ()).toString().

15.13.2.4 Date(year, month, date, hours)

The arguments are accepted but are completely ignored. A string is created and returned as if by the
expression (new Date ()).toString().

15.13.2.5 Date(year, month, day)

The arguments are accepted but are completely ignored. A string is created and returned as if by the
expression (new Date ()).toString().

15.13.2.6 Date(year, month)

The arguments are accepted but are completely ignored. A string is created and returned as if by the
expression (new Date ()).toString().

15.13.2.7 Date(value)

The argument is accepted but is completely ignored. A string is created and returned as if by the expression
(new Date ()).toString().

15.13.2.8 Date()

A string is created and returned as if by the expression new Date ().toString().

15.13.3 The Date Constructor

When Date is called as part of a new expression, it is a constructor: it initializes the newly created object.

15.13.3.1 new Date(year, month, date, hours, minutes, seconds, ms)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value of Date.prototype (15.13.4.1).

The [[Class]] property of the newly constructed object is set to “Date”.

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. Call ToNumber(date).
4. Call ToNumber(hours).
5. Call ToNumber(minutes).
6. Call ToNumber(seconds).
7. Call ToNumber(ms).
8. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(8) is 1900+ToInteger(Result(1));

otherwise, Result(8) is Result(1).
9. Compute MakeDay(Result(8), Result(2), Result(3)).
10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).
11. Compute MakeDate(Result(9), Result(10)).
12. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(11))).
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15.13.3.2 new Date(year, month, date, hours, minutes, seconds)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value of Date.prototype (15.13.4.1).

The [[Class]] property of the newly constructed object is set to “Date”.

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. Call ToNumber(date).
4. Call ToNumber(hours).
5. Call ToNumber(minutes).
6. Call ToNumber(seconds).
7. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(7) is 1900+ToInteger(Result(1));

otherwise, Result(7) is Result(1).
8. Compute MakeDay(Result(7), Result(2), Result(3)).
9. Compute MakeTime(Result(4), Result(5), Result(6), 0).
10. Compute MakeDate(Result(8), Result(9)).
11. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(10))).

15.13.3.3 new Date(year, month, date, hours, minutes)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value of Date.prototype (15.13.4.1).

The [[Class]] property of the newly constructed object is set to “Date”.

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. Call ToNumber(date).
4. Call ToNumber(hours).
5. Call ToNumber(minutes).
6. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(6) is 1900+ToInteger(Result(1));

otherwise, Result(6) is Result(1).
7. Compute MakeDay(Result(6), Result(2), Result(3)).
8. Compute MakeTime(Result(4), Result(5), 0, 0).
9. Compute MakeDate(Result(7), Result(8)).
10. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(9))).

15.13.3.4 new Date(year, month, date, hours)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value of Date.prototype (15.13.4.1).

The [[Class]] property of the newly constructed object is set to “Date”.

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. Call ToNumber(date).
4. Call ToNumber(hours).
5. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(5) is 1900+ToInteger(Result(1));

otherwise, Result(5) is Result(1).
6. Compute MakeDay(Result(5), Result(2), Result(3)).
7. Compute MakeTime(Result(4), 0, 0, 0).
8. Compute MakeDate(Result(6), Result(7)).
9. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(8))).
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15.13.3.5 new Date(year, month, day)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value of Date.prototype (15.13.4.1).

The [[Class]] property of the newly constructed object is set to “Date”.

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. Call ToNumber(date).
4. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(4) is 1900+ToInteger(Result(1));

otherwise, Result(4) is Result(1).
5. Compute MakeDay(Result(4), Result(2), Result(3)).
6. Compute MakeDate(Result(5), 0).
7. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(6))).

15.13.3.6 new Date(year, month)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value of Date.prototype (15.13.4.1).

The [[Class]] property of the newly constructed object is set to “Date”.

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(3) is 1900+ToInteger(Result(1));

otherwise, Result(3) is Result(1).
4. Compute MakeDay(Result(3), Result(2), 1).
5. Compute MakeDate(Result(4), 0).
Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(5))).

15.13.3.7 new Date(value)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value of Date.prototype (15.13.4.1).

The [[Class]] property of the newly constructed object is set to “Date”.

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToPrimitive(value).
2. If Type(Result(1)) is String, then go to step 5.
3. Let V be ToNumber(Result(1)).
4. Set the [[Value]] property of the newly constructed object to TimeClip(V) and return.
5. Parse Result(1) as a date, in exactly the same manner as for the parse method (15.13.4.2); let V be the

time value for this date.
6. Go to step 4.

15.13.3.8 new Date()

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value of Date.prototype (15.13.4.1).

The [[Class]] property of the newly constructed object is set to “Date”.

The [[Value]] property of the newly constructed object is set to the current time (UTC).

15.13.4 Properties of the Date Constructor

The value of the internal [[Prototype]] property of the Date constructor is the Function prototype object.
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Besides the internal [[Call]] and [[Construct]] properties and the length property (whose value is 7), the Date
constructor has the following properties:

15.13.4.1 Date.prototype

The initial value of Date.prototype is the built-in Date prototype object (15.13.5).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.13.4.2 Date.parse(string)

The parse function applies the ToString operator to its argument and interprets the resulting string as a
date; it returns a number, the UTC time value corresponding to the date. The string may be interpreted as a
local time, a UTC time, or a time in some other time zone, depending on the contents of the string.

If x is any Date object whose milliseconds amount is zero within a particular implementation of
ECMAScript, then all of the following expressions should produce the same numeric value in that
implementation, if all the properties referenced have their initial values:

x.valueOf()
Date.parse(x.toString())
Date.parse(x.toGMTString())

However, the expression

Date.parse(x.toLocaleString())

is not required to produce the same number value as the preceding three expressions and, in general, the
value produced by Date.parse is implementation-dependent when given any string value that could not
be produced in that implementation by the toString or toGMTString method.

15.13.4.3 Date.UTC(year, month, date, hours, minutes, seconds, ms)

When the UTC function is called with seven arguments, the following steps are taken:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. Call ToNumber(date).
4. Call ToNumber(hours).
5. Call ToNumber(minutes).
6. Call ToNumber(seconds).
7. Call ToNumber(ms).
8. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(8) is 1900+ToInteger(Result(1));

otherwise, Result(8) is Result(1).
9. Compute MakeDay(Result(8), Result(2), Result(3)).
10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).
11. Return TimeClip(MakeDate(Result(9), Result(10))).

The UTC function differs from the Date constructor in two ways: it returns a time value as a number, rather
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.13.4.4 Date.UTC(year, month, date, hours, minutes, seconds)

When the UTC function is called with six arguments, the following steps are taken:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. Call ToNumber(date).
4. Call ToNumber(hours).
5. Call ToNumber(minutes).
6. Call ToNumber(seconds).
7. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(7) is 1900+ToInteger(Result(1));

otherwise, Result(7) is Result(1).
8. Compute MakeDay(Result(7), Result(2), Result(3)).
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9. Compute MakeTime(Result(4), Result(5), Result(6), 0).
10. Return TimeClip(MakeDate(Result(8), Result(9))).

The UTC function differs from the Date constructor in two ways: it returns a time value as a number, rather
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.13.4.5 Date.UTC(year, month, date, hours, minutes)

When the UTC function is called with five arguments, the following steps are taken:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. Call ToNumber(date).
4. Call ToNumber(hours).
5. Call ToNumber(minutes).
6. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(6) is 1900+ToInteger(Result(1));

otherwise, Result(6) is Result(1).
7. Compute MakeDay(Result(6), Result(2), Result(3)).
8. Compute MakeTime(Result(4), Result(5), 0, 0).
9. Return TimeClip(MakeDate(Result(7), Result(8))).

The UTC function differs from the Date constructor in two ways: it returns a time value as a number, rather
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.13.4.6 Date.UTC(year, month, date, hours)

When the UTC function is called with four arguments, the following steps are taken:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. Call ToNumber(date).
4. Call ToNumber(hours).
5. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(5) is 1900+ToInteger(Result(1));

otherwise, Result(5) is Result(1).
6. Compute MakeDay(Result(5), Result(2), Result(3)).
7. Compute MakeTime(Result(4), 0, 0, 0).
8. Return TimeClip(MakeDate(Result(6), Result(7))).

The UTC function differs from the Date constructor in two ways: it returns a time value as a number, rather
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.13.4.7 Date.UTC(year, month, date)

When the UTC function is called with three arguments, the following steps are taken:

1. Call ToNumber(year).
2. Call ToNumber(month).
3. Call ToNumber(date).
4. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(4) is 1900+ToInteger(Result(1));

otherwise, Result(4) is Result(1).
5. Compute MakeDay(Result(4), Result(2), Result(3)).
6. Return TimeClip(MakeDate(Result(5), 0)).

The UTC function differs from the Date constructor in two ways: it returns a time value as a number, rather
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.13.4.8 Date.UTC(year, month)

The behaviour of the UTC function with two arguments is implementation-dependent.

15.13.4.9 Date.UTC(year)

The behaviour of the UTC function with one argument is implementation-dependent.
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15.13.4.10 Date.UTC()

The behaviour of the UTC function with no arguments is implementation-dependent.

15.13.5 Properties of the Date Prototype Object

The Date prototype object is itself a Date object (its [[Class]] is “Date”) whose value is NaN.

The value of the internal [[Prototype]] property of the Date prototype object is the Object prototype object
(15.2.3.1).

In following descriptions of functions that are properties of the Date prototype object, the phrase “this Date
object” refers to the object that is the this value for the invocation of the function; it is a runtime error if
this does not refer to an object for which the value of the internal [[Class]] property is “Date”. Also, the
phrase “this time value” refers to the number value for the time represented by this Date object, that is, the
value of the internal [[Value]] property of this Date object.

15.13.5.1 Date.prototype.constructor

The initial value of Date.prototype.constructor is the built-in Date constructor.

15.13.5.2 Date.prototype.toString()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in a convenient, human-readable form in the current time zone.

The toString function is not generic; it generates a runtime error if its this value is not a Date object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

15.13.5.3 Date.prototype.valueOf()

The valueOf function returns a number, which is this time value.

The valueOf function is not generic; it generates a runtime error if its this value is not a Date object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

15.13.5.4 Date.prototype.getTime()

1. If the this value is not an object whose [[Class]] property is “Date”, generate a runtime error.
2. Return this time value.

15.13.5.5 Date.prototype.getYear()

Note: This function is not part of this specification.  The function getFullYear is much to be preferred
for nearly all purposes, because it avoids the “year 2000 problem.”  If implemented, getYear may follow the
following rules:

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return YearFromTime(LocalTime(t)) − 1900.

15.13.5.6 Date.prototype.getFullYear()

4. Let t be this time value.
5. If t is NaN, return NaN.
6. Return YearFromTime(LocalTime(t)).

15.13.5.7 Date.prototype.getUTCFullYear()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return YearFromTime(t).

15.13.5.8 Date.prototype.getMonth()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return MonthFromTime(LocalTime(t)).
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15.13.5.9 Date.prototype.getUTCMonth()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return MonthFromTime(t).

15.13.5.10 Date.prototype.getDate()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return DateFromTime(LocalTime(t)).

15.13.5.11 Date.prototype.getUTCDate()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return DateFromTime(t).

15.13.5.12 Date.prototype.getDay()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return WeekDay(LocalTime(t)).

15.13.5.13 Date.prototype.getUTCDay()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return WeekDay(t).

15.13.5.14 Date.prototype.getHours()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return HourFromTime(LocalTime(t)).

15.13.5.15 Date.prototype.getUTCHours()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return HourFromTime(t).

15.13.5.16 Date.prototype.getMinutes()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return MinFromTime(LocalTime(t)).

15.13.5.17 Date.prototype.getUTCMinutes()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return MinFromTime(t).

15.13.5.18 Date.prototype.getSeconds()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return SecFromTime(LocalTime(t)).

15.13.5.19 Date.prototype.getUTCSeconds()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return SecFromTime(t).

15.13.5.20 Date.prototype.getMilliseconds()

1. Let t be this time value.
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2. If t is NaN, return NaN.
3. Return msFromTime(LocalTime(t)).

15.13.5.21 Date.prototype.getUTCMilliseconds()

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return msFromTime(t).

15.13.5.22 Date.prototype.getTimezoneOffset()

Returns the difference between local time and UTC time in minutes.

1. Let t be this time value.
2. If t is NaN, return NaN.
3. Return (t − LocalTime(t)) / msPerMinute.

15.13.5.23 Date.prototype.setTime(time)

1. If the this value is not a Date object, generate a runtime error.
2. Call ToNumber(time).
3. Call TimeClip(Result(1)).
4. Set the [[Value]] property of the this value to Result(2).
5. Return the value of the [[Value]] property of the this value.

15.13.5.24 Date.prototype.setMilliseconds(ms)

1. Let t be the result of LocalTime(this time value).
2. Call ToNumber(ms).
3. Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), Result(2)).
4. Compute UTC(MakeDate(Day(t), Result(3))).
5. Set the [[Value]] property of the this value to TimeClip(Result(4)).
6. Return the value of the [[Value]] property of the this value.

15.13.5.25 Date.prototype.setUTCMilliseconds(ms)

1. Let t be this time value.
2. Call ToNumber(ms).
3. Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), Result(2)).
4. Compute MakeDate(Day(t), Result(3)).
5. Set the [[Value]] property of the this value to TimeClip(Result(4)).
6. Return the value of the [[Value]] property of the this value.

15.13.5.26 Date.prototype.setSeconds(sec [, ms ] )

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds( ).

1. Let t be the result of LocalTime(this time value).
2. Call ToNumber(sec).
3. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
4. Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2), Result(3)).
5. Compute UTC(MakeDate(Day(t), Result(4))).
6. Set the [[Value]] property of the this value to TimeClip(Result(5)).
7. Return the value of the [[Value]] property of the this value.

15.13.5.27 Date.prototype.setUTCSeconds(sec [, ms ] )

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds( ).

1. Let t be this time value.
2. Call ToNumber(sec).
3. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
4. Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2), Result(3)).
5. Compute MakeDate(Day(t), Result(4)).
6. Set the [[Value]] property of the this value to TimeClip(Result(5)).
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7. Return the value of the [[Value]] property of the this value.

15.13.5.28 Date.prototype.setMinutes(min [, sec [, ms ]] )

If sec is not specified, this behaves as if sec were specified with the value getSeconds ( ).

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds( ).

1. Let t be the result of LocalTime(this time value).
2. Call ToNumber(min).
3. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).
4. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
5. Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).
6. Compute UTC(MakeDate(Day(t), Result(5))).
7. Set the [[Value]] property of the this value to TimeClip(Result(6)).
8. Return the value of the [[Value]] property of the this value.

15.13.5.29 Date.prototype.setUTCMinutes(min [, sec [, ms ]] )

If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds ( ).

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds( ).

1. Let t be this time value.
2. Call ToNumber(min).
3. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).
4. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
5. Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).
6. Compute MakeDate(Day(t), Result(5)).
7. Set the [[Value]] property of the this value to TimeClip(Result(6)).
8. Return the value of the [[Value]] property of the this value.

15.13.5.30 Date.prototype.setHours(hour [, min [, sec [, ms ]]] )

If min is not specified, this behaves as if min were specified with the value getMinutes( ).

If sec is not specified, this behaves as if sec were specified with the value getSeconds ( ).

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds( ).

1. Let t be the result of LocalTime(this time value).
2. Call ToNumber(hour).
3. If min is not specified, compute MinFromTime(t); otherwise, call ToNumber(min).
4. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).
5. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).
7. Compute UTC(MakeDate(Day(t), Result(6))).
8. Set the [[Value]] property of the this value to TimeClip(Result(7)).
9. Return the value of the [[Value]] property of the this value.

15.13.5.31 Date.prototype.setUTCHours(hour [, min [, sec [, ms ]]] )

If min is not specified, this behaves as if min were specified with the value getUTCMinutes( ).

If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds ( ).

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds( ).

1. Let t be this time value.
2. Call ToNumber(hour).
3. If min is not specified, compute MinFromTime(t); otherwise, call ToNumber(min).
4. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).
5. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).
7. Compute MakeDate(Day(t), Result(6)).
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8. Set the [[Value]] property of the this value to TimeClip(Result(7)).
9. Return the value of the [[Value]] property of the this value.

15.13.5.32 Date.prototype.setDate(date)

1. Let t be the result of LocalTime(this time value).
2. Call ToNumber(date).
3. Compute MakeDay(YearFromTime(t), MonthFromTime(t), Result(2)).
4. Compute UTC(MakeDate(Result(3), TimeWithinDay(t))).
5. Set the [[Value]] property of the this value to TimeClip(Result(4)).
6. Return the value of the [[Value]] property of the this value.

15.13.5.33 Date.prototype.setUTCDate(date)

1. Let t be this time value.
2. Call ToNumber(date).
3. Compute MakeDay(YearFromTime(t), MonthFromTime(t), Result(2)).
4. Compute MakeDate(Result(3), TimeWithinDay(t)).
5. Set the [[Value]] property of the this value to TimeClip(Result(4)).
6. Return the value of the [[Value]] property of the this value.

15.13.5.34 Date.prototype.setMonth(mon [, date ] )

If date is not specified, this behaves as if date were specified with the value getDate( ).

1. Let t be the result of LocalTime(this time value).
2. Call ToNumber(date).
3. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
4. Compute MakeDay(YearFromTime(t), Result(2), Result(3)).
5. Compute UTC(MakeDate(Result(4), TimeWithinDay(t))).
6. Set the [[Value]] property of the this value to TimeClip(Result(5)).
7. Return the value of the [[Value]] property of the this value.

15.13.5.35 Date.prototype.setUTCMonth(mon [, date ] )

If date is not specified, this behaves as if date were specified with the value getUTCDate( ).

1. Let t be this time value.
2. Call ToNumber(date).
3. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
4. Compute MakeDay(YearFromTime(t), Result(2), Result(3)).
5. Compute MakeDate(Result(4), TimeWithinDay(t)).
6. Set the [[Value]] property of the this value to TimeClip(Result(5)).
7. Return the value of the [[Value]] property of the this value.

15.13.5.36 Date.prototype.setFullYear(year [, mon [, date ]] )

If mon is not specified, this behaves as if mon were specified with the value getMonth( ).

If date is not specified, this behaves as if date were specified with the value getDate( ).

1. Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.
2. Call ToNumber(year).
3. If mon is not specified, compute MonthFromTime(t); otherwise, call ToNumber(mon).
4. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
5. Compute MakeDay(Result(2), Result(3), Result(4)).
6. Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).
7. Set the [[Value]] property of the this value to TimeClip(Result(6)).
8. Return the value of the [[Value]] property of the this value.

15.13.5.37 Date.prototype.setUTCFullYear(year [, mon [, date ]] )

If mon is not specified, this behaves as if mon were specified with the value getUTCMonth( ).

If date is not specified, this behaves as if date were specified with the value getUTCDate( ).
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1. Let t be this time value; but if this time value is NaN, let t be +0.
2. Call ToNumber(year).
3. If mon is not specified, compute MonthFromTime(t); otherwise, call ToNumber(mon).
4. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
5. Compute MakeDay(Result(2), Result(3), Result(4)).
6. Compute MakeDate(Result(5), TimeWithinDay(t)).
7. Set the [[Value]] property of the this value to TimeClip(Result(6)).
8. Return the value of the [[Value]] property of the this value.

15.13.5.38 Date.prototype.setYear(year)

Note: This function is not part of this specification.  The function setFullYear is much to be preferred
for nearly all purposes, because it avoids the “year 2000 problem.”  If implemented, setYear may follow the
following rules:

1. Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.
2. Call ToNumber(year).
3. If Result(2) is NaN, set the [[Value]] property of the this value to NaN and return NaN.
4. If Result(2) is not NaN and 0<=ToInteger(Result(2)) <=99 then Result(4) is ToInteger(Result(2)) + 1900.

Otherwise Result(4) is Result(2).
5. Compute MakeDay(Result(4), MonthFromTime(t), DateFromTime(t)).
6. Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).
7. Set the [[Value]] property of the this value to TimeClip(Result(6)).
8. Return the value of the [[Value]] property of the this value.

15.13.5.39 Date.prototype.toLocaleString()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in a convenient, human-readable form appropriate to the geographic or
cultural locale

15.13.5.40 Date.prototype.toUTCString()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in a convenient, human-readable form in UTC.

15.13.5.41 Date.prototype.toGMTString()

The function object that is the initial value of Date.prototype.toGMTString is the same function
object that is the initial value of Date.prototype.toUTCString. The toGMTString property is
provided principally for compatibility with old code. It is recommended that the toUTCString property be
used in new ECMAScript code.

15.13.6 Properties of Date Instances

Date instances have no special properties beyond those inherited from the Date prototype object.

16 Errors
This specification specifies the last possible moment an error occurs. A given implementation may generate errors
sooner (e.g., at compile-time). Doing so may cause differences in behaviour among implementations. Notably, if
runtime errors become catchable in future versions, a given error would not be catchable if an implementation
generates the error at compile-time rather than runtime.

An ECMAScript compiler should detect errors at compile time in all code presented to it, even code that detailed
analysis might prove to be “dead” (never executed). A programmer should not rely on the trick of placing code
within an if (false) statement, for example, to try to suppress compile-time error detection.

In general, if a compiler can prove that a construct cannot execute without error under any circumstances, then it
may issue a compile-time error even though the construct might never be executed at all.
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